
A π-Calculus Internal Domain-Specific
Language for Scala

Pedro Matiello
pmatiello@gmail.com

Ana C. V. de Melo (advisor)
acvm@ime.usp.br

Contents

1 Introduction 4

2 The π-Calculus 5
2.1 Definitions and Syntax . 5
2.2 Semantics . 6
2.3 An Example . 7
2.4 Variants . 7
2.5 Implementations . 8

2.5.1 PiLib . 8
2.5.2 Pict . 9
2.5.3 Kroc . 9

3 The Scala Programming Language 12
3.1 The Basics . 12
3.2 Inheritance and Traits . 13
3.3 Implicit Conversions . 13
3.4 Pattern Matching . 14

4 Application Programming Interface 15
4.1 Syntax . 15

4.1.1 Agent Definition . 15
4.1.2 Names . 16
4.1.3 Links . 16
4.1.4 Scope Restriction . 17
4.1.5 Silent Transitions . 17
4.1.6 Prefix Concatenation 17
4.1.7 Agent Composition . 18
4.1.8 Agent Summation . 18
4.1.9 Matching . 19

4.2 Internal Representation . 19

5 Execution Model 24
5.1 The Thread-Based Runner . 24

5.1.1 Message Passing . 24
5.1.2 Algorithm Overview 26
5.1.3 Thread Management 28

2

5.1.4 Thread Spawning . 29
5.1.5 Regarding Composition 30
5.1.6 Usage . 30

6 Common Patterns 31
6.1 Function calls . 31
6.2 Mutual Exclusion . 31
6.3 Synchronization Barrier . 32

7 Proof of Concept 33
7.1 Client-Server . 33
7.2 HTTP Server . 34

8 Conclusion 37

References 38

3

1 Introduction

The π-calculus is one of many approaches to concurrent computation by the
means of formal modeling. It provides a simple, yet expressive, language ca-
pable of describing process interaction and reconfiguration uniquely through
communication in the form of message passing.

Scala is a general purpose programming language that compile to Java
bytecodes. It integrates features both from object-oriented programming and
functional programming. Also, it provides a sophisticated static type system,
but still manages to conciliate this with a flexible and consise syntax.

A Domain Specific Language (DSL) a programming language designed to
a specific purpose. A DSL is said to be internal (or embedded) when it is
built within a host language (usually as a library or framework).

This document presents Pistache1: an implementation of the π-calculus
as a domain specific language hosted in Scala.

The realm of sequential programs has been positively and significantly im-
pacted by the introduction of several abstractions, often packed in paradigms
such as structured and object-oriented programming, and in collections of
data types. These abstractions facilitated the reasoning on these types of pro-
grams by encapsulating low-level details behind more understandable sym-
bols and operations.

A similar breakthrough is yet to happen for concurrent programs. Still,
this project has been developed under the understanding that the π-calculus
might contribute to this goal.

1http://code.google.com/p/pistache/

4

2 The π-Calculus

The π-calculus, introduced by Milner, Parrow and Walker in [MPW89], is
a process calculus for concurrent computation with dynamic reconfigura-
tion. Agents (also called processes) communicate by the exchange of names
through channels (links). Since channels are names, the interconnections
may change as they are passed and shared.

This section is a brief introduction to an orthodox version of the calculus,
which is synchronous and monadic. For a more detailed description, one
should refer to [MPW89], [Par01] and [Mil99].

2.1 Definitions and Syntax

Given a set of names {x, y, z, ...}, a set of agent identifiers {A,B,C, ...}, each
having an arity, and a set of agents {P,Q,R, ...}. The syntax of the agents
is defined as follows:

Prefixes α ::= ȳx Output
y(x) Input
τ Silent

Agents P ::= 0 Nil
α.P Prefix
P + P Sum
P |P Parallel
(νx)P Restriction
[x = y].P Match
[x 6= y].P Mismatch

Definitions A(x1, ..., xn)
def
= P

Therefore, agents can be of the following forms:

• The empty agent 0.

• An output prefix ȳx.P that sends the name x through the channel y
and then continues as P .

5

• An input prefix y(x).P that receives some name along the channel y,
places it on x, and then continues as P .

• A silent prefix τ.P that continues as P after executing a silent action
τ , which does not interacts with the environment.

• A sum P +Q that can behave either as P or as Q.

• A parallel composition P |Q that behaves as P andQ running in parallel.

• An restriction (νx).P that behaves as P having the name x in its local
scope.

• A match [x = y].P that behaves as P if x and y are the same name.

• A mismatch [x 6= y].P that behaves as P if x and y are not the same
name.

• A defined agent A(y1, ..., yn), from an defining equation A(x1, ..., xn)
def
=

P , that behaves like P{yi/xi}.

2.2 Semantics

Traditionally, the operational semantics of a process algebra is given by a
labelled transition system, where transitions are of kind P

α−→ Q, for agents
ranging over {P,Q, ...} and transitions ranging over {α, ...}. In P

α−→ Q, it
is understood that P is subject to a labelled transition α leading to Q.

Regarding the π-calculus, the transition rules are:

Prefix
α.P

α−→P
Restriction P

α−→P ′,x 6∈α
(νx).P

α−→(νx).P ′

Summation P
α−→P ′

P+Q
α−→P ′ Summation Q

α−→Q′

P+Q
α−→Q′

Match α.P
α−→P

[x=x].P
α−→P

Mismatch α.P
α−→P,x6=y

[x 6=y].P α−→P

Parallel P
α−→P ′,bn(α)∩fn(Q)=∅

P |Q α−→P ′|Q
Parallel Q

α−→Q′,bn(α)∩fn(P)=∅
P |Q α−→P |Q′

Communication P
α(x)−→P ′,Q

ᾱu−→Q′

P |Q α−→P ′{u/x}|Q′

6

2.3 An Example

The following example, inspired by [Par01], shall illustrate the calculus.
Let C, P and S be agents for a client, a printer and a print server,

respectively. The print server and the client share a communication channel
a, and the print server and the printer share another communication channel
b. The intended interaction is to have the S to share access to P with C,
and then to have C to send a message to P . Also, after performing their
tasks, the agents P and S should return to their starting state and the agent
C should stop.

The agents can be defined as:

C = a(p).p̄x
P = b(y).P
S = āb.S

And the entire situation happens by the parallel composition of these
three agents:

C|P |S

2.4 Variants

The π-calculus can be varied in many ways, for achieving many different
effects (including, often, simpler mechanics that are friendlier to concrete
implementations). Some of the common variations are:

Guarded sums The standard π-calculus summation performs a global
choice synchronously, which is cumbersome in many implementation sce-
narios. In order to preserve the operator, many presentations of the calculus
use guarded sums, which is a summation such that that every agent Pi in
P1 + ...+Pn is preceded (guarded) by either an input or by an output prefix
(i.e. P = y(x).P ′ or P = ȳx.P ′).

Polyadic In the standard π-calculus, channels transmit a single name at
time. The polyadic π-calculus, on the other hand, allows channels of arbitrary
arities. Therefore, in this variant, outputs of the form ȳ〈x1, ..., xn〉 and inputs
of the form y(x1, ..., xn) are valid.

7

Asynchronous The standard π-calculus determines that every communi-
cation between two agents is synchronous: the emission and the reception of
a message always happen at the same time (and agents too advanced in the
computation and trying to send a message will have to wait until some other
agent catches up to receive it). The asynchronous variant of the calculus
does not have this requirement, allowing an process to emit a name through
a channel and continue its computation even if no other agent is listening for
messages from this channel.

2.5 Implementations

Being such a simple and expressive language for expressing concurrence, a
set of concrete implementations of the π-calculus were developed. They im-
plement different fragments of the calculus and target different uses. A small
survey follows.

2.5.1 PiLib

PiLib is an implementation of the π-calculus for Scala introduced in [CO03]
by Vincent Cremet and Martin Odersky. It is part of Scala’s standard library
and provides a monadic, synchronous and typed version of the calculus, with-
out match nor mismatch, and with guarded sums.

The same paper provides as example a specification of a two-place buffer:

Buffer(put, get) = B0(put, get)
B0(put, get) = put(x).B1(put, get, x)
B1(put, get, x) = getx.B0(put, get) + put(y).B2(put, get, x, y)
B2(put, get, x, y) = getx.B1(put, get, y)

The same specification is written as Scala with PiLib code as bellow.

def Buffer[a](put: Chan[a], get: Chan[a]):unit = {
def B0:unit = choice(put * { x => B1(x) });
def B1(x: a):unit = choice (

get(x) * B0 ,
put * { y => B2(x, y) });

def B2(x: a, y: a):unit = choice(get(x)
* B1(y));

B0
}

8

This table summarises PiLib’s syntax:

π-calculus PiLib

P = ... def P {...}
ȳx.P y(x)*P

y(x).P y*{x=>P(x)}
P +Q choice(P, Q)

P |Q spawn < P | Q >

(νx)P def proc {val x; P}

2.5.2 Pict

Pict [PT97] is a programming language based on the π-calculus computation
model. Due to implementation concerns, the calculus here is polyadic, asyn-
chronous, typed and without summation. It provides a syntax similar to the
original calculus and some predefined processes and links for convenience.

The following program spawns two processes and creates a link called ch.
Then, the first process sends the string "Something" through the link to the
second process, which prints it.

run (new ch:^ String (ch!" Something"
| ch?msg = print!msg))

This table summarises Pict’s syntax:

π-calculus Pict

P = ... def P = ...

ȳx.P y!x = P

y(x).P y?x = P

P |Q P | Q

(νx)P (new x P)

2.5.3 Kroc

Kroc (Kent Retargetable occam-pi Compiler) [WB05] is an occam-pi com-
piler for Intel 386 and compatible processors. The occam-pi language itself
is a variation of the original occam language built on the π-calculus instead
of the Communicating sequential processes (CSP) [Hoa78].

9

The occam-pi language implements a typed, synchronous and monadic
(including data structures) variant of the calculus. Guarded sums are sup-
ported. Process mobility (between different machines) is also supported.

The following example illustrates message passing, process definition,
composition and sequencing in occam-pi.

PROC example1 (CHAN BYTE out!)
-- (Private) Channel creation
CHAN INT link:

-- Process definition
PROC print ()

INT value:
SEQ -- Sequential process

link ? value -- input prefix
out.int (value , 0, out!)

:

-- Process with arguments
PROC sumProc(VAL INT x, y)

link ! x + y -- output prefix
:
PAR -- Parallel composition

sumProc(2, 3)
print()

:

Bellow, a deliberately complicated example for introducing guarded pro-
cesses in occam-pi. The producer processes sends even numbers through one
link and odd numbers through the other. The consumer process then watches
both links and reacts accordingly when one of them is filled.

PROC example2 (CHAN BYTE out!)
CHAN INT even:
CHAN INT odd:

PROC consumer ()
WHILE TRUE

INT value:
ALT -- Guarded process (summation)

even ? value
out.int (value , 0, out!)

odd ? value
out.int (value , 0, out!)

:

10

PROC producer ()
INITIAL INT n IS 0:
WHILE TRUE

SEQ

even ! n
odd ! n+1
n := n + 2

:

PAR

producer ()
consumer ()

:

This table summarises occam-pi’s syntax:

π-calculus occam-pi

P = ... PROC P

...

:

ȳx.P SEQ

y ! x

P()

y(x).P SEQ

y ? x

P()

y(x).P + z(x).Q ALT

y ? x

P()

z ? x

Q()

P |Q PAR

P()

Q()

(νx)P PROC proc

TYPE x

P

:

11

3 The Scala Programming Language

Scala2 is a general purpose programming language designed to integrate fea-
tures of object-oriented programming and functional programming. It is one
of the many new languages that compile to Java bytecodes. Although it
is a statically typed language (i.e. values types are known and checked at
compile time), it offers some mechanisms to bring as much as possible of the
conveniences of dynamically typed languages without sacrificing the safety
provided by static typing.

This chapter should work as an brief introduction to this language. The
interested reader is advised to refer to [OSV08] for an extensive guide. Those
who are familiar with Java might also find [SH09] useful.

3.1 The Basics

Variable declaration Scala supports two types of variables: vals, which
can be assigned only once, and vars, which can be reassigned.

val string:String = "Not reassignable"
var string:String = "Reassignable"

In most cases, the compiler can infer the type of the variables. Therefore,
some of the typing can be avoided:

val string = "Not reassignable"
var string = "Reassignable"

Method definition Methods are defined with the def keyword.

def max(x:Int , y:Int):Int = {
if (x > y) x else y

}

Methods containing a single statement, like the one above, can omit the
curly braces:

def max(x:Int , y:Int):Int = if (x > y) x else y

And, in many cases, the return type can also be inferred by the compiler:

def max(x:Int , y:Int) = if (x > y) x else y

2http://www.scala-lang.org/

12

Class definition Classes, defined by the class keyword, can be used to
wrap variables and methods.

class SpecialInt(int:Int) {
def isPositive = int >= 0
def isNegative = int <= 0

}

The arguments in the first line belong to the class constructor and are
visible to contained methods. Instances of classes are built using the new

keyword:

val number = new SpecialInt (10)

3.2 Inheritance and Traits

Scala provides two mechanisms of inheritance. The first is subclassing:

class VerySpecialInt(int:Int) extends SpecialInt(int:Int) {
def isZero = int == 0

}

The second mechanism is a construct called trait, which can be under-
stood as a Java interface supporting method implementations.

trait Person {
def sleep { Thread sleep 1000 }
def talk:Unit

}

class NicePerson extends Person {
def talk { println (" Hello") }

}

The NicePerson class is forced by the compiler to provide an implemen-
tation to the talk method. The method sleep can be optionally provided.

class LazyPerson extends Person {
def talk { println ("Zzzz") }
override def sleep { Thread sleep 2000 }

}

3.3 Implicit Conversions

Given a situation where an expression E of type T is expected to be of type
S, and T does not extends S, the Scala compiler will try to implicitly convert

13

E to type S by using a predefined conversion rule.
The simplest use case is to convert a value to an expected type on a

method call:

implicit def Int2String(int:Int) = int.toString

def len(str:String) = str.size

With the conversion above in scope, the method len can be called with an
integer as argument (and will return the length of its decimal representation).

This mechanism can also be used to new methods to an existing class:

class SpecialInt(int:Int) {
def isPositive = int >= 0
def isNegative = int <= 0

}

implicit def Int2SpecialInt(int:Int) = new SpecialInt(int)

When the conversion above is in scope, code like 3.isPositive will com-
pile just like the Int class actually had a method called isPositive.

3.4 Pattern Matching

Scala supports a construct called case classes. A class with a case modifier
will always export all its constructor parameters as public class attributes
and allow recursive decomposition by another feature of the language called
pattern matching.

Pattern matching is one more flow control mechanism. The mechanism
will match values of any type and will execute different branches of the code
depending of the type of the matched object and of the values enclosed by
it.

This example illustrates the use of pattern matching on case classes:

trait Human
case class Man(name:String , age:Int) extends Human
case class Woman(name:String , age:Int) extends Human

def whoIs(human:Human) {
human match {

case Man(name , age) => println ("His name is " + name)
case Woman(name , age) => println ("Her name is " +

name)
}

}

14

4 Application Programming Interface

Pistache provides an internal domain-specific language for writing π-calculus
programs in Scala. Among the usual pi-Calculus features and operations,
the following are supported:

• Agent definition, including agents with arguments

• Prefix and Prefix-Agent concatenation (for sequential execution)

• Agent composition (for parallel execution)

• Guarded agent summation

• Scope restriction for names

• Links for sending and receiving names (including links)

• If structure for matching

• Silent transitions

4.1 Syntax

This section explains the supported syntax.

4.1.1 Agent Definition

The common idiom for defining agents is:

val agent = Agent (...)

Self-referential agents, used to implement recursive behaviour, require
some boilerplate code. In order to satisfy Scala’s type checker in compile
time, the Agent type can not be omitted. Also, to avoid runtime errors due
to references to an still non-instantiated object, lazy evaluation3 must be
used.

lazy val recursiveAgent:Agent = Agent (...)

3Lazy evaluation can be defined by two main traits: ”First, the evaluation of a given
expression is delayed, or suspended, until its result is needed. Second, the first time a
suspended expression is evaluated, the result is memoized (i.e., cached) so that, if it is
ever needed again, it can be looked up rather than recomputed.” [Oka98].

15

Agents with arguments can be defined as below:

def agentWithArgs(arg1:Type1 , ..., argN:TypeN):Agent =
Agent {

...
}

4.1.2 Names

Names can be used as references to objects. For instance:

val name = Name(some_object)

It is also possible to specify a name holding no reference:

val name = Name[Type]

The referred object then can be set or changed:

name := other_object

And retrieved:

referred_object = name.value

4.1.3 Links

Links are the mechanism provided to address the communication between
processes. Although it is not standard in π-calculus, the links in Pistache
are typed (so the values transmitted must be instances of the specified type).
As expected, they are created by calling Link:

val link = Link[Type]

The syntax for sending a name through a link is:

link~name

The sent reference can then be received and bound to another name on
another agent:

link(another_name)

16

4.1.4 Scope Restriction

It is often necessary to have names restricted to a single agent. This is also
possible:

val agentWithRestrictedName = Agent {
val restrictedName = Name (...)
...

}

4.1.5 Silent Transitions

Silent transitions do not communicate with the environment, but actually
perform an action within the context of the process. These actions are an
ordinary closures, without any arguments nor return type, wrapped as an
agent by calling Action:

val silentTransition = Action{ ... }

It is possible to have an agent containing a single silent transition. For
instance:

val silent = Action{ doSomething () }
val agent = Agent(silent)

4.1.6 Prefix Concatenation

Agents can be made by sequencing the prefixes:

val sequentialAgent = Agent(prefix1 *...* prefixN)

A recursive agent can be defined along the same lines:

lazy val recursiveAgent:Agent =
Agent(prefix1 *...* prefixN*recursiveAgent)

As silent transitions are understood as prefixes, they can be concatenated:

val silent1 = Action{ doSomething () }
val silent2 = Action{ doSomethingElse () }
val agent = Agent(silent1*silent2)

17

4.1.7 Agent Composition

It is also possible to a agent to be composed of other agents running in
parallel:

val composedAgent = Agent(agent1 | ... | agentN)

And having more than one agent running makes communication possible:

val square = Link[Link[Int]]

val C = Agent {
val link = Link[Int]
val reply = Name[Int]
val print = Action { println(reply.value) }
square~link*link ~5* link(reply)*print

}

val S = Agent {
val link = Name[Link[Int]]
val number = Name[Int]
val calculate = Action {

number := number.value * number.value
}
square(link)*link(number)*calculate*link~number

}

When C | S is executed, C will send a channel named link to S, which
will be used by C to send an integer to S. Then, S will use this same link to
send back to C to square of the integer sent.

4.1.8 Agent Summation

Agents can be guarded by prefixes (input, output or silent transitions). Al-
though in π-calculus the ordinary concatenation operator is used to guard an
agent, Pistache requires the use of a semantically equivalent guard operator.

val guardedAgent = Agent {
guardPrefix :: Agent

}

Guarded agents can be used in summations. When a summation is exe-
cuted, only one of its terms will be selected and executed.

val summation = Agent {
val t = Action { ... }
(y~(x) :: P1) + (y(x) :: P2) + (t :: P3)

}

18

4.1.9 Matching

In order to direct the execution flow of the programs, the If match structure
is provided.

The accepted syntax is:

val agent = Agent(If (condition) {thenAgent })

When executed, if condition evaluates to true, the agent thenAgent is
to be executed. Otherwise, the agent just halts.

The composition operator can be used if some agent is also to be executed
when the given condition evaluates to false:

If (condition) {P} | If (! condition) {Q}

4.2 Internal Representation

Pistache types are crafted to enforce π-calculus’ syntactic rules. Therefore,
code written in the syntax presented above is checked at compile time for
type errors. This checking is provided by the Scala compiler and prevents
the programmer from writting meaningless code like:

val agent = Agent(p1 *45.3)

(The compiler will rightfuly output something like: type mismatch;

found : Double(45.3) required: pistache.picalculus.Agent.)

Avoiding type errors like this is the duty of the type system4, but this
can only be done properly by having the types to reflect the domain model
as closely as possible. Therefore, in order to provide both π-calculus’ restric-
tions and flexibilities, a number of types were implemented.

The following traits are present:

4”A type system is a tractable syntactic method for proving the absence of certain
program behaviors by classifying phrases according to the kinds of values they compute.”
[Pie02].

19

Type Name Description

PiObject A trait for tagging all π-calculus’ objects as such.
Provides no behaviour.

Concatenation A trait providing the prefix concatenation opera-
tion.

Composition A trait providing the parallel composition opera-
tion.

Summation A trait providing the summation operation.
Guard A trait providing the guard operation.
Prefix A trait for all π-calculus’ prefixes.
Agent A trait for all π-calculus’ agents.

trait PiObject

trait Concatenation{
def *(other: => Prefix):ConcatenationPrefix
def *(other: => Agent):ConcatenationAgent

}

trait Composition {
def |(other: => Agent):CompositionAgent

}

trait Summation {
def +(other: => GuardedAgent):SummationAgent

}

trait Guard {
def ::(other: => Prefix):GuardedAgent

}

trait Prefix extends PiObject with Concatenation

trait Agent extends PiObject with Composition with Guard

The prefixes are provided by the following case classes:

20

Type Name Description

ActionPrefix A case class representing silent transitions.
ConcatenationPrefix A case class representing the concatenation of two

prefixes.
LinkPrefix A case class representing the an action (input or

output) through a link.

case class ActionPrefix(val procedure: () => Unit) extends

Prefix

case class ConcatenationPrefix(val left: () => Prefix , val

right: () => Prefix) extends Prefix

case class LinkPrefix[T](val link:Link[T], val action:
ActionType , val name:Name[T]) extends Prefix

And agents are provided by the following case classes:

Type Name Description

ConcatenationAgent A case class representing the concatenation of a
prefix and an agent.

GuardedAgent A case class representing an agent guarded by a
prefix.

CompositionAgent A case class representing the parallel composition
of two agents.

SummationAgent A case class representing the summation of two
agents.

MatchAgent A case class representing an agent conditioned by
a match.

NilAgent A case class representing the null agent.
RestrictedAgent A case class representing agents with support for

restricted names.

case class ConcatenationAgent(val left: () => Prefix , val

right: () => Agent) extends Agent

case class GuardedAgent(val left: () => Prefix , val right: ()
=> Agent) extends Agent with Summation

case class CompositionAgent(val left: () => Agent , val right:
() => Agent) extends Agent

21

case class SummationAgent(val left: () => Agent , val right:
() => Agent) extends Agent with Summation

case class MatchAgent(val condition: () => Boolean , val then:
() => Agent) extends Agent

case class NilAgent () extends Agent

case class RestrictedAgent(val agent: () => Agent) extends

Agent

Assuming that the programmer made no syntax mistakes, the compiler
should be satisfied. Then, at runtime, full π-calculus agents will be built from
their atomic parts, as specified by the programmer. The following examples
ilustrates how agents and prefixes are built from concatenation:

// suppose already defined prefixes p1 , p2 , p3
// and an agent Q
val P = Agent(p1*p2*p3*Q)

This is the agent P = p1.p2.p3.Q written as a Pistache object. The
method * belongs to the prefix on its left side, takes as argument the prefix
on its right side, and returns a specific type of prefix, called Concatenation-

Prefix if the right side is a prefix, and called ConcatenationAgent if the
right side is an agent.

So, the first invocation of * has p1 on the left side, p2 on the right
side, and produces ConcatenationPrefix(p1, p2) as a result. The second
invocation has ConcatenationPrefix(p1, p2) on the left side, p3 on the
right side, and produces ConcatenationPrefix(ConcatenationPrefix(p1,
p2), p3) as a result. And that’s how it goes.

The same happens for process composition. The only difference is that the
type that wraps the agents on the left and on the right is called Composition-

Agent. So, the parallel agent Agent(P | Q | R) is built as Composition-

Agent(CompositionAgent(P, Q), R).
Now, a last case must be considered:

// suppose already defined prefixes p1 , p2 , p3
// and an agent Q
val P = Agent(p1*p2*p3 | Q)

As seen before, p1*p2*p3 is of type ConcatenationPrefix, which does
not provide a | method for parallel composition. The whole assignment
accounts for the agent P = p1.p2.p3|Q in pen-and-paper π-calculus. As this

22

is informally accepted as a valid expression in the calculus (as abbreviation
of P = p1.p2.p3.0|Q), one would expect that the code above would compile
fine. In order to do so, Pistache uses an implicit conversion to produce an
agent from the concatenated prefixes.

More precisely: from p1*...*pN it will produce ConcatenationAgent(

p1*...*pN, NilAgent) which accounts for the explicitly terminated agent
p1...pn0 in π-calculus.

P

ConcatenationAgent

ConcatenationPrefix Q

ConcatenationPrefix p3

p1 p2

Figure 1: Internal representation of a sequential process

23

5 Execution Model

As the agent objects are just simple data structures, devoid of any behaviour,
an external mechanism is needed to turn all these objects into an actual
program. This task is performed by an specification runner, which takes
an agent as argument, interprets its structure and executes the appropriate
actions.

This approach provides some flexibility, allowing for the possibility of
implementation of different runners, tailored for different execution environ-
ments or variants of the π-calculus.

5.1 The Thread-Based Runner

The thread-based runner, named ThreadedRunner in Pistache, uses ordinary
system threads to execute π-calculus agents concurrently (basically, every
agent has its own thread, and their execution can be carried by as many
cores are available in the machine). The communication between agents is
synchronous and it is prepared to handle any expression accepted by the API
(i.e. any compilable expression).

In order to understand this implementation, both the general execution
algorithm and the message passing mechanism must be observed.

5.1.1 Message Passing

As agents are concerned, two operations are possible on channels: output
and input. In the present case the communication is synchronous, therefore
agents attempting to send a message are blocked until a message is actually
received by some other agent, and agents attempting to receive a message
are blocked until a message is actually sent.

The procedure is described bellow. It is assumed in the description that,
for every channel, both the output and input sides share a lock for mutual
exclusion in order to keep at most one thread active at the procedure at any
moment. When an thread is set to wait, its execution will pause until it is
awaken by a signal. Different channels use different lock objects in order to
avoid interference.

24

Output

Wait until the channel is empty
Put the message in the buffer
Signal the channel not empty
Wait until the channel is empty

Input

Wait until the channel is not empty
Get the message from the buffer
Signal the channel empty

This is very simple and works properly for agents in a parallel compo-
sition, but not for agents in a summation. Because at most one term of a
summation is to be executed, the execution of the guard prefixes must be
attempted sequentially (and not concurrently) until one of them succeeds.
Still, the algorithm above is not prepared for polling and will lock the thread
until the first (input or output) prefix actually performs a communication,
which might not happen at all.

The following version is prepared for this situation. Non-guarded I/O
uses the modified Input and Output algorithms bellow, while guarded I/O,
not surprisingly, uses the Guarded Input and Guarded Output algorithms.
These guarded variants are responsible for enforcing that the appropriate
preconditions are satisfied before calling the basic input or output algorithms.

The same locking pattern used in the previous version applies here. Also,
the guarded variants report their success status as return value, as this in-
formation is required by the runner in order to determine the execution flow.

Output

Wait until the channel is empty and
(there is no writer or the writer is me)

Set the writer as myself
Put the message in the buffer
Signal the channel not empty
Wait until the buffer is empty
Unset the writer
Signal the channel unblocked

25

Guarded Output

If there is no writer or the channel is empty
Then set the writer as myself

If the channel is empty and there is a reader which is not me:
Then set the writer as myself and start Output

Otherwise, fail

Input

Set the reader as myself
Wait until the channel is not empty
Get the message from the buffer
Signal the channel empty
Unset the reader
Signal the channel blocked

Guarded Input

If the channel is not blocked and there is a writer which is not me:
- Then, if the channel is not empty: Start Input
- Otherwise, set the reader as myself and fail
Otherwise, fail

In this version, there are three new variables. Both writer and reader

are used to announce the intent of communicating through a channel and to
avoid that terms of the same summation attempt to communicate to each
other. The variable blocked is used to avoid a race condition where some
potential reader is mislead into expecting a message in a channel where the
former reader have already left but the former writer have not.

5.1.2 Algorithm Overview

The algorithm for concurrent execution of π-calculus specifications is de-
scribed bellow. Relevant comments are inserted within code fragments in
order to properly explain the fragment in question.

function start(agent):
initialize the list of threads
run(agent) in new thread
wait until all threads executing agents are finished

26

(This function will start the computation. It will only return when all
threads executing agents terminate.)

private function run(node):

node match:

case ActionPrefix(procedure):
execute procedure

(Execute the closure wrapped in a ActionPrefix object.)

case ConcatenationAgent(left , right):
run(left)
run(right)

case GuardedAgent(left , right):
run(left)
run(right)

(Both expressions above match agents like l.R, where l is a prefix (or a
non-terminated sequence of prefixes) and R is a agent. Their execution is
performed sequentially, with the agent following the prefix.)

case ConcatenationPrefix(left , right):
execute(left apply)
execute(right apply)

(Execute a sequence l.r of prefixes, one after another. A sequence of
prefixes is also considered a prefix here.)

case CompositionAgent(left , right):
run(left) in new thread
run(right) in new thread

(This matches expressions like L|R. New threads are produced to execute
L and R concurrently.

case SummationAgent(left , right):
agents = shuffle ([terms(left) terms(right)])
continue = null
while (continue is null):

for each in agents:
if not done:

each.left match:
case ActionPrefix(procedure):

execute procedure
continue = each.right

27

case LinkAgent(link , Send , name):
if guardedSend(link , name)

continue = each.right
case LinkAgent(link , Receive ,

name):
if guardedRecv(link , name)

continue = each.right
run(continue)

(This starts producing a list of terms α1.P1, ..., αn.Pn for a α1.P1 + ... +
αn.Pn. This list is shuffled to ensure non-determinism. Then, every prefix
αi will have its execution attempted until one of them succeeds. Once this
is the case for αk, Pk will be executed and every other αj.Pj, j 6= k will be
abandoned.)

case IfAgent(condition , branch):
if (condition is true): run(branch)

(This matches expressions like If(condition)B. The agent B will be
executed if condition == true.)

case LinkAgent(link , Send , name):
send(link , name)

case LinkAgent(link , Receive , name):
receive(link , name)

(The two matches above relate to expressions of the form ȳx and y(x),
respectively. Their behaviour is described in the previous section.)

The first thing to notice is the use of pattern matching for both selecting
the execution branch based on the subtype of the node object and extracting
the relevant values within it.

Second, from the algorithm one can notice that nodes wrapping silent
transitions and message passing are always leaf nodes (the recursion stops on
them). And concatenations, compositions and conditionals are always non-
leaf nodes (the recursion might continue from them). The former are actual
actions and the latter mostly provide structure and order to the execution.

5.1.3 Thread Management

In order to prevent the application from terminating while some agents are
still being processed, the runner must delay its own termination until all

28

threads executing agents are finished. This is mentioned in the algorithm
overview above, but a more detailed description of the mechanism is provided
here.

Let T be a list of threads, which is empty when start() is called. The
execution of an agent on a new thread is described below:

private function runInNewThread(agent):
synchronized { numberOfThreads ++; notify }
t = new Thread {

run(agent)
synchronized { numberOfThreads --; notify }

}
T = T + t
start t

The termination is postponed until the variable numberOfThreads reaches
zero. In order to avoid unnecessary CPU usage, the thread responsible for
verifying this condition only executes when the number of threads is changed.

private function waitThreads ():
synchronized {

while (numberOfThreads != 0) wait;
}

5.1.4 Thread Spawning

Producing threads is an expensive process. Although this cost is negligible in
long-lived agents, it takes a quite significant share of the life time of processes
that exist for only a few hundred milliseconds. If too many of these short-
lived agents are spawned in a short amount of time, the runner’s performance
may be severelly harmed.

The cost of new agents, still, can be minimized by the reuse of threads.
The Java platform provides a cached thread pool5, which can be used to
start threads. When a new thread is requested, the pool will reuse one of
the cached threads, if one is available; otherwise it will produce a new one.
Finished threads are cached and, if not used within 60 seconds, discarded (so
memory can be released).

In a small experiment, 100,000 agents were produced, both with and
without thread reuse. These produced agents were composed of a single,
empty, silent action. The following table summarizes the obtained results6.

5http://download.oracle.com/javase/6/docs/api/java/util/concurrent/Executors.html
6On a Core2 Duo 1.8Ghz with 3GB of RAM.

29

Mechanism Consumed Time

new Thread 23.743 seconds
CachedThreadPool 2.089 seconds

5.1.5 Regarding Composition

Processes in a parallel composition perform can evolve both independently
of other processes and by interacting with other processes.

Communication In a situation where two agents P and Q execute in par-
allel, attempting to communicate to each other through a common channel,
the message passing mechanism described ahead will take care of the thread
locking and name exchanging. Once this is performed, the agents are allowed
to procced. In short: ȳx.P |y(x).Q

τ−→ P |Q.

Parallel Execution Any agent P attempting to perform a silent transi-
tion will perform it without interference from any other agents that may be
executing in parallel. In short: τ.P |Q τ−→ P |Q.

5.1.6 Usage

Actual usage of the runner is very simple and, once the desired agent is
produced, it requires no more than a line a code.

val agent = Agent { ... }
new ThreadedRunner(agent).start

30

6 Common Patterns

This chapter introduces some patterns that can be used in order to perform
common tasks.

6.1 Function calls

Functions can be encoded by processes with arguments augmented with an
extra parameter: a channel for returning the computed value. The function
call is performed by executing, in parallel, both this process (filled with the
relevant arguments) and the process that needs the computed value (guarded
by the link through which the return value will be sent).

The following code illustrates this technique.

def sum(p1:Int , p2:Int , returnLink:Link[Int]):Agent = Agent {
returnLink~Name(p1+p2)

}

val P = Agent {
val link = Link[Int]
val retv = Name[Int]
val prnt = Action{println(retv.value)}
link(retv)*prnt | sum(5, 10, link)

}

6.2 Mutual Exclusion

Mutual exclusion can be implemented by using an extra process to control
the access to the critical section. This process can be of the form:

C
def
= m(n).n().C

The entry protocol for clients is to send any link n through m. The exit
protocol is to send any message (even an empty one) through n.

This works because π-calculus links are synchronous. The controller waits
for agents trying to enter the critical section in m(n). When one comes in,
the controller will wait in n() until the agent releases the lock by sending a
message. Meanwhile, any other agents trying to get in will be blocked.

The following code illustrates this technique.

var shared = 0
val mutex = Link[Link[Any]]

31

lazy val controller:Agent = Agent {
val link = Name[Link[Any]]
mutex(link)*link()*controller

}

lazy val P:Agent = Agent {
val act = Action { shared += 1 }
val pvt = Link[Any]
mutex~pvt*act*pvt~()*P

}

6.3 Synchronization Barrier

A synchronization barrier for an arbitrary number of processes can be im-
plemented by using an extra controller agent. Given a shared link barrier

of type Link[Link[Any]], this controller process, listed below, will receive
and store links until the desired number of held agents is reached. Then, it
will a send empty messages through each of these links in order to notify the
opening of the barrier.

def controller(n:Int , channel:Link[Link[Any]]) =
controllerHold(n, channel , Nil)

def controllerHold(n:Int , channel:Link[Link[Any]], agentList:
List[Link[Any]]):Agent = Agent {
val newAgent = Name[Link[Any]]

If (agentList.size < n) {channel(newAgent) *
controllerHold(n, channel , newAgent :: agentList) } |

If(agentList.size >= n) {controllerRelease(agentList) }
}

def controllerRelease(agentList:List[Link[Any]]):Agent =
Agent {
agentList.first ~() * If (! agentList.tail.isEmpty) {

controllerRelease(agentList tail) }
}

Clients of this barrier must then send an private link to the controller
(through the barrier channel) and, then, wait on this same link until they
receive an empty message, which signals the opening of the barrier.

32

7 Proof of Concept

For the purpose of demonstrating the viability of Pistache as a platform
for developing concurrent applications, some small programs were written.
These programs are presented in this chapter.

7.1 Client-Server

This is the implementation of the client-server example presented in section
2.3, in which three agents (C, S and P) communicate in order to print a
message. The pen-and-paper π-calculus version is repeated here for conve-
nience:

C = (νp)(νx)a(p).p̄x
S = āb.S
P = (νy)b(y).P

The Pistache version below presents the same mechanics. The Server

agent (S) will send to the Client agent (C) a link to the Printer agent (P).
The client will then send a message to the printer, which will display it on
the screen.

object Printserver {
def main (args:Array[String]) {

val sl = Link[Link[String]]
val pl = Link[String]

val Client = Agent {
val l = Name[Link[String]]
sl(l) * l~"Hello , world!"

}

lazy val Server:Agent = Agent {
sl~pl*Server

}

lazy val Printer:Agent = Agent {
val msg = Name[String]
val act = Action { println(msg.value) }
pl(msg) * act * Printer

}

33

new ThreadedRunner(Client | Server | Printer) start
}

}

It’s worth noting the explicit declaration and typing of names (including
the communication links), which isn’t required in pure π-calculus.

7.2 HTTP Server

A tiny HTTP Server, capable of serving files in the execution directory, was
written and is presented here in a simplified form.

First, this application needs to perform communication through TCP
sockets. The class below takes, as constructor arguments, a socket and two
π-calculus links. It has a method that returns an agent which will behave
like an interface between the application and the socket.

class PiSocket(socket:Socket , send:Link[String], recv:Link[
String]) {

private val wBuf = Name[String]
private val rBuf = Name[String]

private val writeToSocket = Action { send value of wBuf
through socket }

private val readFromSocket = Action { receive a line from
socket and store on rBuf }

private val closeSocket = Action { close socket }

def agent() = Agent {
lazy val writer:Agent = send(wBuf) * (If (wBuf !=

null) {writeToSocket * writer} | If (wBuf == null)
{closeSocket })

lazy val reader:Agent = readFromSocket * recv~rBuf *
reader

writer | reader
}

}

Given a socket and two links (e.g. send and recv), the call bellow will
return the desired agent:

new PiSocket(socket , send , recv).agent

34

This agent will read a message from the send link, and send this message
through the socket if it is not null (otherwise, the socket will be closed).
Similarly, it will receive a message from the socket and send it through recv.
Therefore, an second agent can send a message through the socket by sending
it through the send link, and receive messages from the socket through the
recv link.

Now, having this class, the actual server can be presented. It is composed
of a few agents:

serverAgent Accepts incoming connections and spawns other
agents to handle them

handlerAgent Spawns an agent for interfacing with the socket and
an agent to receive the HTTP request

loop Receives the request and, depending on its validity,
continues as one of the agents below

okAgent Sends a header reporting success followed by the re-
quested file

errAgent Sends a header reporting failure

def main(args:Array[String]) {

val serverSocket = new ServerSocket (8080)

lazy val serverAgent:Agent = Agent {
var requestSocket:Socket = null
val accept = Action { requestSocket = serverSocket.

accept }
accept * (serverAgent | handlerAgent(requestSocket))

}

def handlerAgent(socket:Socket) = {
val send = Link[String]
val recv = Link[String]
var fileData:String = null
val requestSocketAgent = new PiSocket(socket , send ,

recv).agent

lazy val loop:Agent = Agent {
val buffer = Name[String]

val parse = Action {

35

parse request and fill the contents of the
requested file in fileData

}

recv(buffer) * parse * (
If (buffer.value != null) {loop} |
If (buffer.value == "" && fileData != null) {

okAgent(send , fileData)} |
If (buffer.value == "" && fileData == null) {

errAgent(send)})
}

requestSocketAgent | loop
}

def okAgent(send:Link[String], extension:String , data:
String) = Agent {
send~HEADER_OK * send~data * send~null

}

def errAgent(send:Link[String]) = Agent {
send~HEADER_ERR * send~null

}

new ThreadedRunner(serverAgent).start
}

Of course, the code above is lacking many details, including error handling
and the relevant imports. The full code, still, is available online7.

7http://bitbucket.org/pmatiello/pihttpd

36

8 Conclusion

Process calculi were developed to express and reason about sets of inde-
pendent processes and their interactions through mechanisms of message-
passing.

The π-calculus is a relatively recent member of this family. Although
originally developed as a specification language, a number of implementa-
tions were created (a few of them being presented earlier in this document).
These implementations have demonstrated the feasibility of the π-calculus
concurrency model, not only as a formal specification tool, but also in actual
software programming.

Pistache is, then, yet another π-calculus implementation. It is very similar
to PiLib, being written as a domain-specific language hosted in the general-
purpose language Scala. Still, both implementations play different roles as
PiLib offers a more fluid and comfortable interface for programming while
in Pistache these conveniences are sacrificed to keep it syntactically closer to
the pen-and-paper calculus.

In regard to Kroc and Pict, there are differences beyond the programming
interface. Pistache is hosted in Scala and, in consequence, exists within the
Java ecosystem. This is a very broad and rich environment, and allows for
the luxury of integrating with a number of other libraries.

The small HTTP Server presented as proof of concept application upholds
the stated perception that the π-calculus can contribute to the development
of real programs. The simple and expressive mechanics of the calculus, ar-
guably, made the task easier by providing adequate abstractions for reasoning
about the problems in question.

Also, the treatment of formal expressions as executable code narrows the
gap between specifications and implementations, and does so without the use
of automatic code generation tools.

37

References

[CO03] Vincent Cremet and Martin Odersky. PiLib: A Hosted Language
for Pi-Calculus Style Concurrency. In Proceedings of Domain-
Specific Program Generation: International Seminar, Lecture
Notes in Computer Science (LNCS), 2003.

[Hoa78] C. A. R. Hoare. Communicating Sequential Processes. Commu-
nications of the ACM, 1978.

[Mil99] Robin Milner. Communicating and Mobile Systems: the Pi-
Calculus. Cambridge University Press, 1999.

[MPW89] Robin Milner, Joachim Parrow, and David Walker. A Calculus of
Mobile Processes, Part I. I and II. Information and Computation,
100, 1989.

[Oka98] Chris Okasaki. Purely Functional Data Structures. Cambridge
University Press, 1998.

[OSV08] Martin Odersky, Lex Spoon, and Bill Venners. Programming in
Scala: A Comprehensive Step-by-step Guide. Artima Incorpora-
tion, 2008.

[Par01] Joachim Parrow. An Introduction to the pi-Calculus. In Handbook
of Process Algebra, pages 479–543. Elsevier, 2001.

[Pie02] Benjamin Pierce. Types and Programming Languages. MIT Press,
2002.

[PT97] Benjamin C. Pierce and David N. Turner. Pict: A Programming
Language Based on the Pi-Calculus. In Proof, Language and In-
teraction: Essays in Honour of Robin Milner. MIT Press, 1997.

[SH09] Michel Schinz and Philipp Haller. A Scala Tutorial for Java Pro-
grammers. http://www.scala-lang.org/node/198, 2009.

[WB05] P.H. Welch and F.R.M. Barnes. Communicating Mobile Processes:
introducing occam-pi. In 25 Years of CSP. Springer Verlag, 2005.

38

