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14.1 Introduction

14.1.1 Crew Scheduling
Crew scheduling can be defined as the problem of assigning a group of

workers (a crew) to a set of tasks. The crews are typically interchange-
able, although in some cases different crews possess different character-
istics that affect which subsets of tasks they can complete.

Crew scheduling problems appear in a number of transportation con-
texts. Examples include bus and rail transit, truck and rail freight trans-
port, and freight and passenger air transportation. There are many com-
mon elements to all of these problems, including the need to cover all
tasks while seeking to minimize labor costs, and a wide variety of con-
straints imposed by safety regulations and labor negotiations. Nonethe-
less, each application also has its own unique characteristics and its own
research challenges. In fact, most crew scheduling research focuses on a
particular application, rather than the general case.

In this chapter, we focus on the airline crew scheduling problem. [For
additional details on crew scheduling in the railway industry we refer the
reader to Caprara et al., 1998 and for crew scheduling in mass transit
systems to Wilson, 1999.] There are a number of reasons for focusing
on airlines. First, they provide a context for examining many of the
elements common to all crew scheduling problems. Second, the airline
problem is truly a planning problem in the sense that airlines typically
have a fixed schedule that changes at most monthly. Therefore, substan-
tial time and resources can be (and are) allocated to solving it. Third,
airline crews receive substantially higher salaries than equivalent per-
sonnel in other modes of transportation; the savings associated with an
improved airline crew schedule can be quite significant. Finally, a large
number of restrictive rules, mandated both by the FAA (or equivalent
governing agencies for non-U.S. carriers) and strong labor unions, greatly
restrict the set of feasible solutions, making airline crew scheduling one
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of the hardest crew scheduling problems. For all of these reasons, the air-
line crew scheduling problem has received the greatest level of attention,
both from industry and from the academic community.

14.1.2 Airline Planning
Crew scheduling is just one of a number of challenging planning prob-

lems faced by airlines, see Figure 14.1. Although these problems are
closely interrelated, they are typically solved sequentially, due to their
size and complexity. Airlines usually begin by solving a schedule design
problem, in which they determine the flights to be flown during a given
time period. In the next step, the fleet assignment problem, they decide
what type of aircraft (such as Boeing 767, 727, etc.) to assign to each
flight, as a function of the forecasted demand for that flight. The main-
tenance routing problem follows, in which individual aircraft are assigned
to flights so as to ensure that each aircraft spends adequate time at spe-
cific airports in order to undergo routine maintenance checks. Having
completed these three tasks, the airlines then address the problem of
scheduling crews.

Figure 14.1. Schedule Planning

Within airline crew scheduling, there are significant differences be-
tween how international and domestic operations are scheduled. In the
U.S., for example, international flight networks tend to be relatively
sparse, with a limited number of flights into and out of an airport.
U.S. domestic operations, in contrast, are characterized by hub-and-
spoke networks with large numbers of arrivals followed by departures
(called banks or complexes) occurring at hub airports in relatively short
periods of time. International flight networks, however, are character-
ized by point-to-point networks with operations spread throughout the
network. Another distinction is that international networks typically
operate on a weekly schedule, while daily schedules are usually assumed



for domestic operations. Moreover, unlike domestic operations, it is not
uncommon for international operations to deadhead crews, that is fly
them as passengers on some of the flights within their schedule in order
to re-position them for future assignments. Barnhart et al., 1995 study
the deadheading problem. All of these differences affect how crews are
scheduled.

There are also significant differences between how cockpit and cabin
crews are scheduled. For example, crews of pilots and other cockpit
personnel usually remain together for much of their schedule. Cabin
crews tend to vary more frequently, with flight attendants scheduled
as individuals, rather than as part of a prescribed crew. Another key
difference is that cockpit crews are heavily restricted in the number of
fleet types that they are qualified to fly; cabin crews have greater latitude
in the range of aircraft types that they can staff.

We will focus our attention on the problem of scheduling cockpit
crews. For additional information on other forms of airline crew schedul-
ing, we refer the reader to Day and Ryan, 1997 and Kwok and Wu, 1996.

14.2 The Crew Scheduling Problem
Each cockpit crew is qualified to fly a specific fleet type or set of

closely related fleet types, known as a fleet family. Therefore, we solve
a separate crew scheduling problem for each crew type, which includes
only those flights that have been assigned to the corresponding fleet
types.

The input to a crew scheduling problem is the set of flights to be
covered. Flights are grouped together to form duty periods, which are
series of sequential flight legs comprising a day’s work for a crew. Duties
are then strung together to form pairings, crew trips spanning one or
more work days separated by periods of rest. Finally, monthly schedules
are made up of multiple pairings with time off in between. These four
components, i.e., flights, duties, pairings, and monthly schedules, are the
building blocks of crew scheduling.

Associated with each of these building blocks is a distinct set of con-
straints. These typically come from three sources. First, governing agen-
cies such as the FAA in the U.S. restrict crew scheduling, primarily for
safety purposes. Second, labor organizations often enter into collective
bargaining agreements concerning the crews’ work conditions. Third,
the airlines themselves pose added constraints, for example, to make the
schedule more robust. In addition to these constraints, each building
block is associated with a distinct cost structure. These constraints and
cost structures are described in greater detail in the sections that follow.
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14.2.1 Work Rules and Pay Structures
The most elemental decision in the crew scheduling problem is to

decide which crew to assign to a given flight. The cost of such an as-
signment is a complex computation. Crews are not salaried, but rather
are paid for the time that they spend flying, plus some added compen-
sation for excess time spent on the ground between flights and during
rest periods. Given this, we can think of the ‘cost’ associated with an
individual flight simply as the duration of that flight. Because individual
crews for a given fleet family cannot be distinguished in the crew pairing
problem, crew costs are usually expressed in terms of time rather than
cost. The total flying time in the system is clearly fixed and provides a
lower bound on the optimal crew cost. The objective in crew scheduling
is therefore to minimize pay-and-credit, the payments made above and
beyond the cost of the actual flying time.

14.2.1.1 Duty Periods. A number of rules restrict what
combinations of flights can be flown by the same crew. A sequence of
flights that can be flown by a single crew over the course of a work day is
a duty period. Note that the same crew members typically stay together
throughout the duration of a duty period.

Duties are constrained by a number of restrictions. The most obvious
of these is that flights must be sequential in space and time. Further-
more, there is a restriction on the minimum idle time between two se-
quential flights, sometimes referred to as connect time or sit time. There
is also a restriction on the maximum idle time allowed between two se-
quential flights. Additionally, there is a maximum elapsed time for a
duty period. Finally, strict regulations govern the total number of flying
hours, known as block time, that a crew can incur during the course of
a single duty period.

The crew cost associated with a duty period is usually expressed as
the maximum of three quantities. The first quantity is the flying time.
The second quantity is a fraction (for example, 5

8) of the total elapsed
time of the duty period. The third quantity is a minimum guaranteed
number of hours. This pay structure primarily compensates crews for
flying time, but also provides additional pay for those crews assigned
to very short duties or to duties with extensive idle time between the
flights. Formally the cost of a duty period d can be expressed as

bd = max{fd · elapse, fly,min guar},



where bd is the cost in minutes, fd · elapse is a fraction of the elapsed
time elapse, fly is the number of minutes of flying in the duty period,
and min guar is the minimum guarantee expressed in minutes.

14.2.1.2 Pairings. Often a duty period starts and ends at
different airports. Therefore, the crew cannot always return home at
the end of a duty period but instead must often layover until the next
day’s duty period begins. Typically, crews spend anywhere from one to
five days in a row away from home. A sequence of duties and layovers
is known as a pairing. In general, a crew will stay together for all of the
duties within a pairing.

There are a number of logical constraints on what constitutes a fea-
sible pairing. Clearly, a pairing’s first duty period must begin at the
crew’s domicile, called also the crewbase, and the last duty period must
end there as well. In addition, each duty period must begin at the same
airport where the previous duty period ended.

Pairings are further constrained by a complex array of rest require-
ments, flying time restrictions, and other constraints. These include the
maximum number of duties in a pairing, the minimum and the maxi-
mum amount of rest between duties, and the maximum elapsed time of
a pairing, also known as time-away-from-base (TAFB). One particularly
complicated constraint is the 8-in-24 rule, which is imposed by the FAA
in the U.S. This rule requires extra rest if a pairing contains more than
8 hours of flying in any 24 hour period. Generally, this occurs when
the 24 hour period in question spans two consecutive duty periods. It is
allowable to have more than 8 hours of flying in a 24 hour period only so
long as the included rest, i.e., the layover between the two duty periods
involved, and the rest following the second duty period, also known as
the compensatory rest, are of sufficient length.

In the U.S., the cost of a pairing has two components. The first
component, similar to the cost of a duty period, is the maximum of
three quantities. The first of these quantities is the sum of the costs of
the duties contained in the pairing. The second quantity is some fraction
of the total elapsed time of the pairing. The third quantity is a minimum
guaranteed number of minutes per pairing, which is typically the number
of duty periods in the pairing times a fixed minimum guaranteed number
of minutes per duty period. In addition to this, we include a second
component, which represents the extra costs associated with the rest
period between two duties, such as meals and lodging. Formally, the
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cost of a pairing p is

cp = max{fp · TAFB, ndp ·mg,
∑
d∈p

bd}+
∑

d̂∈p,d̄∈p

d̂→d̄

e(d̂, d̄) ,

where d, d̂, d̄ represent the duty periods in p. Here, d̂ → d̄ indicates that
duty period d̄ immediately follows duty period d̂ in p. In addition, mg
and fp are constants, ndp is the number of duty periods in p, and e(d̂, d̄)
is the extra cost associated with the rest between duty periods d̂ and d̄.

European carriers tend to have a fixed salary for each crew. In this
case the cost of a pairing is either ndp or 1.

14.2.1.3 Schedules. Just as a duty period is a sequence of
flights with sit times in between, and a pairing is a sequence of duties
with layovers in between, a schedule is simply a sequence of pairings
with periods of time off in between. However, a key difference between
schedules and the other building blocks is that schedules are associated
with individual crew members, rather than complete crews. The reason
is that each crew member has different needs for time-off throughout
the schedule period, which is typically a month. These include vacation
time, training time, etc. Thus, in assigning crew schedules, we must take
into account the needs and preferences of individual crew members.

In addition to individual crew member needs, we also have constraints
similar to those seen for duties and pairings, for example, limits on the
maximum monthly flying time, the maximum duty time in a month, the
minimum number of consecutive days off, the minimum total number of
days off, the minimum rest between pairings, and so forth.

Given this key difference, it is not surprising that the cost of a schedule
is quite different from the other components. Whereas the focus within
duties and pairings is on actual labor costs, the cost of a schedule is
considered to be more a function of crew satisfaction and of workload
balance.

14.2.2 The Crew Pairing and Crew Assignment
Problems

The crew scheduling problem is typically divided into two subprob-
lems. First, the crew pairing problem is solved. In this problem, we
select a set of pairings such that each flight is included in exactly one
pairing and pay-and-credit is minimized. Then, the crew assignment
problem is solved. In this problem, the chosen pairings are combined
with rest periods, vacations, training time, and other breaks to create



extended individual work schedules, typically spanning a period of about
one month.

14.2.2.1 The Crew Pairing Problem. The domestic U.S.
crew pairing problem is typically solved in three stages: daily, weekly
exceptions, and transition.

The first stage, the daily problem, considers the set of flights which
are flown at least four days per week. In this first stage, we treat these
flights as though they all operate daily. We therefore want to find a
minimum cost set of feasible pairings such that every flight in this set is
covered exactly once. The pairings in this solution are then assumed to
be repeated daily. The daily problem forms a good approximation since
in the U.S. most of the flights operate every day, with a few exceptions
on weekends.

For pairings that span multiple days, we assume that one crew will be
assigned to each of the different duties within that pairing on any given
day. For example, suppose the solution includes a three-day pairing
made up of duties A, B, and C. On any given day, there will be one
crew starting their trip with duty period A, another crew that began
the trip the day before and is now covering duty period B, and a third
crew on the final day of their trip, covering duty period C. This, in
conjunction with the constraint that pairings cannot cover the same
flight more than once, ensures that on any given day, every flight will be
covered by exactly one crew.

Note that a solution to the daily problem will not be completely fea-
sible in practice, because it assumes that all flights are flown every day
of the week. Pairings that cannot be flown on certain days of the week
because one or more of the flights do not operate on that particular
day are referred to as broken pairings. The second crew pairing stage,
the weekly exceptions problem, constructs new pairings to correct these
broken pairings and also to cover those flights that are flown three or
fewer days per week. Thus, in the weekly exceptions problem, we must
associate flights with a specific day of the week. Accordingly, pairings
become specific to days-of-week as well. Typically, deadhead flights are
also needed in order to find good solutions to the weekly exceptions
problem. Combined, the daily and weekly exceptions pairing solutions
cover each flight in the weekly schedule exactly once.

Finally, note that airlines change their flight offerings on a regular
basis, often quarterly and, to some degree, even monthly. Therefore,
multi-day pairings can be problematic at the end of a monthly flight
schedule. For example, on the last day of the month, a new crew must
begin each pairing to cover that day’s flights. However, the remaining
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days of the pairing may not be valid given that different flights might be
offered in the next month’s schedule. We therefore must solve a third
stage of the crew pairing problem, the transition problem. This problem
constructs pairings to cover flights for a small number of days spanning
the changeover from one monthly flight schedule to another.

In all three of these problems, we emphasize that the object is to
minimize pay-and-credit, the labor costs above and beyond the minimum
required flying time.

The three stages described above are typical of U.S. domestic prob-
lems. More generally, we can think of two types of crew pairing prob-
lems, weekly problems and dated problems. Weekly problems yield sets
of pairings that are repeated weekly; pairings that start at the end of
the week wrap back around to the beginning of the week. Dated prob-
lems, on the other hand, correspond to specific days of the month. In
the U.S. case, the daily pairing problem and weekly exceptions problem
collectively solve the weekly problem, while the transition problem is a
dated problem.

14.2.2.2 The Crew Assignment Problem. Given the so-
lution to the crew pairing problem, i.e., a minimum cost set of pairings
that cover all flights throughout a monthly period, we must then assign
specific individuals to these pairings. This occurs in the crew assignment
problem.

Just as the crew pairing problem selects a minimum cost set of pairings
(strings of sequential flights that satisfy a variety of rules) such that every
flight is covered, the crew assignment problem selects a set of schedules
(strings of sequential pairings that satisfy a variety of rules) such that
every pairing is covered. In this context, a pairing corresponds to specific
days in the schedule.

In spite of their similarities, these two problems are addressed sepa-
rately, both in industry and in the academic literature. There are two
primary reasons for this. First, in the crew pairing problem we assign
complete crews to flights, while in the crew assignment problem crew
members are scheduled individually, with each pairing being covered by
multiple crew members. Second, the crew pairing problem focuses on
minimizing labor costs, while in the crew assignment problem greater
emphasis is placed on satisfying crew requests and seeking a balanced
distribution of work.

In the U.S., the crew assignment problem is solved in two stages. In
the first stage, a set of schedules is constructed such that each pairing
is included in exactly as many schedules as are needed to fully staff
the flight. Then, in the second stage, these schedules are assigned to



individual crew members using a bidline approach, where schedules are
allocated to crew members through a system in which crew members bid
on their preferred work schedules. The schedules are then awarded by
the airline based on crew priority, often related to seniority.

In Europe, on the other hand, individualized schedules, called rosters,
are often constructed directly, taking into consideration the particular
needs or requests of each crew member and, in some cases, crew seniority
as well.

14.3 Formulations

14.3.1 The Crew Pairing Problem
Crew pairing models are typically formulated as set partitioning prob-

lems, in which we want to find a minimum cost subset of the feasible
pairings such that every flight segment is included in exactly one chosen
pairing.

Let F be the set of flight segments to be covered and let P be the set
of all feasible pairings. Decision variable yp is equal to 1 if pairing p is
included in the solution, and 0 otherwise. Column p has a 1 in row i of
the constraint matrix if flight i is included in pairing p and a 0 otherwise.

The crew pairing problem is

min
∑
p∈P

cpyp∑
p:i∈p

yp = 1 i ∈ F (14.1)

yp ∈ {0, 1} p ∈ P .

Note that this formulation requires the explicit enumeration of all pair-
ings. Enumerating pairings can be difficult both because of the nu-
merous work rules that must be checked to ensure legality and, more
importantly, because of the huge number of potential pairings. In fact,
for most real instances, explicit enumeration of the constraint matrix is
not possible. For example, a domestic problem on a hub-and-spoke net-
work with several hundred flights typically has billions of pairings. Thus,
heuristic local optimization approaches or column generation methods
(described in Section 14.4) are used to solve all but the smallest of prob-
lem instances.

This basic set partitioning model is used for all three phases of crew
pairing optimization. The models differ in the set of flights F that
define the constraints of the problem. For the daily problem, there is
one constraint for each flight that is repeated four or more times per
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week. The underlying assumption in solving this problem is that each
pairing in the solution will be flown starting each day of the week. Recall
that this presupposes that pairings are constrained to cover a flight leg
at most once.

In the weekly and dated problems, F contains all of the flights in the
flight schedule. In the weekly problem the flights are associated with a
specific day of the week whereas in the dated problem they are associated
with a specific date. Note that in the dated problems, we can relax the
restriction that a pairing does not cover the same flight more than once
since flights are associated with specific dates in these problems. For
weekly problems, the same relaxation is valid for all of the pairings with
time away from base shorter than a week.

14.3.1.1 Balancing Constraints. Many airlines also add
crewbase balancing constraints to the basic crew pairing model. These
constraints ensure that the distribution of work over the set of crewbases
is matched to the crew resources. They require that the number of
hours of work contained in the chosen pairings which originate at a given
crewbase must be between specified lower and upper bounds, which are a
function of the number of crews stationed at that crewbase. Constraints
of this form are known as two-sided knapsack constraints.

Example. We illustrate the crew pairing formulation using an example
composed of the following seven flights.

Flight # Orig Dest Start End Frequency
1 A B 08:00 09:00 not 67
2 B C 10:00 11:00
3 C D 13:00 14:00 not 7
4 C A 15:00 16:00
5 D A 15:00 16:00 not 6
6 A B 17:00 18:00
7 B C 11:00 12:00 not 67

The last column indicates the flight schedule. For example, flight 1 is
operated every week day, while flight 5 is operated every day except
Saturday. We assume, for simplicity, that all of the airports are in the
same time zone.



We first consider the daily problem. Suppose that the valid duty
periods are

D1 = {1} D2 = {2} D3 = {3} D4 = {4}
D5 = {5} D6 = {6} D7 = {7} D8 = {1, 2}
D9 = {1, 7, 3} D10 = {2, 3} .

Assuming that airports A, C, and D are crewbases, we have six pair-
ings, which can be expressed in terms of the duty periods as

P1 = {D4, D8} P2 = {D9, D5} P3 = {D5, D6, D10}
P4 = {D4, D6, D7} P5 = {D1, D7, D4} P6 = {D5, D7, D9} .

Pairing P6 covers flight 7 twice and therefore it is not considered in
the daily problem. Notice that an additional pairing could have been
defined by the set of duties {D4, D1, D2}. However, this pairing covers
the same flights as pairing P1. Given that both pairings originate at
the same crewbase, only one of the two pairings (the less costly) need
to appear in the model. In this example, we assume that {D4, D8} has
lower cost than {D4, D1, D2}.

Assuming pairing costs c1 = c2 = c3 = c4 = 4 and c5 = 5, from (14.1)
we obtain the following formulation.

min 4y1 +4y2 +4y3 +4y4 +5y5

y1 +y2 +y5 = 1 (flight 1)

y1 +y3 = 1 (flight 2)

y2 +y3 = 1 (flight 3)

y1 +y4 +y5 = 1 (flight 4)

y2 +y3 = 1 (flight 5)

y3 +y4 = 1 (flight 6)

y2 +y4 +y5 = 1 (flight 7)

y1, y2, y3, y4, y5 ∈ {0, 1}

If we require that at least 3 hours and at most 6 hours of pay be
assigned to crewbases A and D, and at most 5 hours of pay to crewbase
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C, then the crew balance constraints are

3 ≤4y2 + 3y5 ≤ 6 (Crewbase A)
0 ≤3y1 + 3y4 ≤ 5 (Crewbase C)
3 ≤ 4y3 ≤ 6 (Crewbase D).

An optimal solution to this problem uses pairings 3 and 5, for a total
cost of 9.

To obtain a solution to the weekly problem, we need, in addition
to solving the daily problem, to solve a weekly exceptions problem to
repair the broken pairings. The weekly exceptions problem consists of
the following flights.

P3 P5

Friday 5 1
Saturday 6
Sunday 6,2 4
Monday 2,3 7,4
Tuesday 4

Alternatively, we could have solved the problem as a single weekly
problem. Such a problem would have 43 flight segments and thus 43
cover constraints. Each pairing would appear multiple times, associated
with the appropriate days of the week. For example, pairing P1 would
have five copies, one starting on each day of the week except Friday and
Saturday. The copy that starts on Sunday wraps around in time since
the next duty period is on Monday. In addition, this weekly problem
also includes the pairing P6.

14.3.2 The Crew Assignment Problem
In this section, we explain the rostering problem, which has been the

focus of much of the crew assignment literature.
Separate rostering problems are solved for each crew type, where a

crew type is specified both by the crew member rank (such as Captain,
First Officer, Flight Engineer, etc.) and the fleet family (such as Boeing
767, Airbus 320, etc.) the crew members are qualified to fly. For a
given crew type, the model input includes the set of pairings that must
commence each day, and the number of crew members of the specified
type that must be assigned to each of these pairings. The constraints of
the rostering model require that:

1 Each pairing in the crew pairing solution is contained in the ap-
propriate number of selected schedules. Note that the rostering



model contains one constraint for each pairing commencing on a
given day, for each day in the rostering period.

2 Each crew member is assigned to exactly one work schedule. If
the airline is not required to use all crew members, a crew member
might be assigned to an empty or null schedule – that is, a schedule
containing no work.

Let K be the set of crew members of a given type, let Sk be the
set of work schedules that are feasible for employee k ∈ K, and let
P be the set of dated pairings to be covered. [A dated pairing is a
pairing together with the starting date of the pairing.] np represents
the minimum number of crew members that must be assigned to pairing
p ∈ P and γs

p is 1 if pairing p ∈ P is included in schedule s and 0
otherwise. Decision variable xk

s equals 1 if schedule s ∈ Sk is assigned
to employee k ∈ K and 0 otherwise. ck

s , the cost of schedule s ∈ Sk

for employee k ∈ K, represents the schedule cost, which might represent
how close the schedule is to the crew member’s stated preferences, or be
set so as to minimize the number of crew members used. The latter is
done by assigning very low costs to null assignments.

Given this notation, we write the crew rostering formulation, Gamache
and Soumis, 1998, for a given crew member type as

min
∑
k∈K

∑
s∈Sk

ck
sx

k
s∑

k∈K

∑
s∈Sk

γs
px

k
s ≥ np for all p ∈ P (14.2)

∑
s∈Sk

xk
s = 1 for all k ∈ K

xk
s ∈ {0, 1} for all s ∈ Sk, for all k ∈ K .

14.4 Solution Algorithms
At their core, the crew pairing and crew assignment models are set

partitioning and set covering models with one constraint for each task
to be performed (i.e. a flight or pairing to be covered) and one variable
for each feasible combination of the tasks.

These problems are difficult for three reasons. First, even determining
whether a combination of tasks is feasible can be difficult, given the wide
array of rules and regulations that must be enforced. Second, these
problems often have an enormous number of variables – often in the
hundreds of millions or more. Third, these variables are all integer,
further complicating the solution process.
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In this section, we discuss solution approaches to address these dif-
ficulties. For the purpose of illustration, we focus our attention on the
crew pairing problem. However, these ideas are applicable to the crew
assignment problem as well.

14.4.1 Historical Solution Approaches
One of the major challenges in solving the crew pairing problem arises

from the shear size of the problem. It is not uncommon for a prob-
lem containing 300 flights to have billions of pairings. Consequently, in
early work on the pairing problem, only a subset of the pairings were
constructed, using heuristic rules of thumb to guide and limit the con-
struction process. In fact, until the 1990’s, local improvement heuristics
represented the state-of-the-art in crew pairing optimization.

A local improvement heuristic for the crew pairing problem starts with
a feasible solution to the set partitioning problem. Because most airlines
only make minor changes to their flight schedules from one planning
period to the next, feasible solutions can usually be constructed manually
by modifying the solution used in the previous planning period. Then, to
find improved schedules, the heuristic randomly selects a small number
of pairings in the current solution and searches for a better solution for
the flights covered by that subset of the pairings. The search is usually
performed by enumerating all possible pairings for the subset of flights
and solving the small set partitioning IP to optimality using branch-
and-bound. Often, these small set partitioning problems can be solved
quickly since the LP relaxations of set partitioning problems with a small
number of rows frequently have integral or near-integral solutions. This
process is repeated until no further improvements are found or until
some preset time limit is reached. This approach is taken in Anbil et al.,
1991 and Gershkoff, 1989.

14.4.2 Pairing Generation
In each iteration of a local search heuristic the current incumbent

solution is improved by considering only a small subset of the flights
and the pairings covering only these flights. Therefore these heuristics
lack the ability to consider the whole flight network in a single step and
they need a large number of iterations before finding a good solution.
An additional drawback of the local search heuristics is that they do
not provide a lower bound on the best possible solution value. Thus, it
is hard to estimate how far the current solution is from the optimum.
To circumvent these two obstacles more global approaches are needed
where at each iteration pairings covering all of the flights are generated.



14.4.2.1 Network Structure for Pairing Generation.
There are two main types of networks that have been developed in the
literature for generating pairings. The first, called a flight network, has
an arc for each flight in the schedule and arcs representing possible con-
nections between flights. The second type of network, a duty period
network, has an arc for each possible duty period and arcs representing
possible overnight connections between the duties.

The network used to model international problems is typically duty
period, rather than flight, based. That is, nodes represent the start or end
of a duty period and an arc is included in the network for each possible
duty period. Connection arcs between duties are included if two duties
can be flown consecutively by the same crew. Domestic operations, on
the other hand, typically use flight networks, because of the large number
of feasible duties.

Each crew pairing is represented by a network path, but only the sub-
set of paths satisfying certain requirements represent pairings. For ex-
ample, in a flight network, a sequence of flights may give a path through
the network, but that does not guarantee that the resulting duty peri-
ods will contain no more than the allowable hours of flying or that the
resulting pairing will contain fewer than the maximum number of duty
periods allowed.

Flight Network A typical flight network, Minoux, 1984, Desrosiers
et al., 1991, has nodes representing the departure and arrival of each
flight as well as a source s and a sink t. There is an arc representing
each flight in the schedule. If there is a sparsity of flights arriving and
departing an airport, it is often necessary to include potential deadhead
flights in order to achieve a good, or even feasible, solution. For daily
problems each flight arc is replicated as many times as the maximum
number of calendar days allowed in a pairing but pairings are generated
only from flights operating on the first day. For weekly problems, flight
arcs are replicated as many times as the maximum number of weeks
allowed in a pairing. Because pairings are often not allowed to exceed
one week in duration, flight arcs need to be replicated only once so that
pairings that cross over from the end of the week to the beginning of
the next week, i.e. from Sunday to Monday, can be generated. Of
course we could allow pairings to cross over without replicating flights
by introducing arcs from the last day of the week back to the first.
However, maintaining an acyclic network by replicating flights simplifies
the shortest path algorithm for finding attractive pairings.

The source node is connected to the departure node of each flight
that originates at a specified crewbase. The arrival node of every flight
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that ends at that crewbase is connected to the sink. There are also
arcs representing legal connections between flights. A pair of flights will
have a connection arc between them if the arrival airport of the first is
the same as the departure airport of the second and the time between
the two flights is either a legal connection within a duty period or a
legal overnight rest. Note, however, that the required duration of an
overnight rest might be a function of the attributes of the duty period
that precedes it and plus perhaps other attributes of the pairing.

Figure 14.2 shows a partial flight network for the following flight sched-
ule.

Flight 1: AIRPORT A – AIRPORT B 08:00 – 09:00
Flight 2: AIRPORT B – AIRPORT C 10:00 – 11:00
Flight 3: AIRPORT C – AIRPORT D 13:00 – 14:00
Flight 4: AIRPORT D – AIRPORT A 15:00 – 16:00

The network spans a two-day time horizon and contains two copies of
each flight. The solid arcs represent flights. With each flight we have a
transition through both time and space from the departure airport and
departure time to the arrival airport and arrival time. The dotted arcs
represent possible connections between flights. Of course, connections
are only allowed between pairs of flights that arrive and depart from
the same airport. Because of minimum and maximum connection time
limits, the set of connection arcs in the network will generally be a
proper subset of the set of all possible connections. Note that in the
figure each arrival node has two connections emanating from it, one
to the next departure and the other to the same departing flight one
day later. In order to generate pairings originating at a crewbase, for
example, Airport A, we would add a source node s and sink node t to
this network. We would then connect s to the departure node of every
flight arc originating at Airport A and connect the arrival node of every
flight arriving at A to node t.

It is easy to see that every legal pairing is represented by some s− t
path in this network. However, there are many s− t paths that do not
represent legal pairings. The network structure guarantees that we will
not connect two flights that do not have their respective arrival and
departure at the same airport, but it does not prevent us from violating
other rules like the maximum number of hours of flying allowed in a duty
period or the maximum TAFB in a pairing.

Using a duty period network it is possible to build the duty period
rules into the network, resulting in a much larger arc set.



Figure 14.2. Flight Network

Duty Period Network This network, Lavoie et al., 1988, Anbil et al.,
1994, Vance et al., 1997b, has nodes representing the departure and
arrival of each duty period as well as a source and sink. There are arcs
representing each possible duty period in the flight schedule as well as
arcs representing legal connections between duties. For daily problems,
each duty period is replicated as many times as the maximum number
of calendar days allowed in a pairing. Similarly, for weekly problems,
each duty period is replicated as many times as the maximum number
of weeks allowed in a pairing.

A pair of duties will have a connection arc between them if the arrival
airport of the first is the same as the departure airport of the second and
the time between them is a legal overnight rest. Remember that the re-
quired duration of an overnight rest might be a function of the attributes
of the duty period that precedes it and possibly other attributes of the
pairing. With the duty period network, unlike the flight network, it is
possible to build explicitly into the network the requirements involving
the preceding duty period.

For daily problems, the no repeated flight rule can be partially en-
forced by allowing connection arcs only between duties that do not share
a common flight. That is, we can ensure that no two consecutive duties
share a common flight, but for nonconsecutive duties, e.g. the first and
third duties, we cannot prevent flight legs from being repeated in this
manner.

Klabjan et al., 2001b propose an approach to store the network com-
pactly. They assume that the duty periods are sorted based on the
departure airport and the duty periods originating at the same airport
are sorted in increasing order of the departure times. For each node rep-
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resenting a duty period arrival they store two pointers. The first pointer
points to the earliest connecting duty period and the second pointer to
the last connecting duty period. Due to the imposed order on duty pe-
riods, all possible connections are obtained by scanning all duty periods
between the two stored duty periods. While compact, this network rep-
resentation cannot embed into the network rules that involve two duty
periods, for example, sharing common flights between two duty periods.

Figure 14.3 shows a two-day duty period network for the schedule
shown in Figure 14.2. The solid arcs represent duty periods and the
dotted ones represent connections between duties. The lighter solid arcs
are the single-flight duty periods corresponding to each of the four flights
in the schedule while the darker solid lines correspond to two additional
duties, one composed of flights 1 and 2 and the other composed of flights
3 and 4. It is possible to build more duty periods from this set of four
flights, but we have chosen to add only two to maintain the simplicity
of the example. Note that the single flight duty period arcs arrive much
later than the corresponding flight arcs in the flight network. This is
because we include the time of the overnight rest in the duration of the
duty arc.

Figure 14.3. Duty Period Network

To generate pairings in the flight network starting and ending at a
crewbase, we add a source and sink node. The source node is connected
to the departure node of each duty period that originates at the speci-
fied crewbase. The arrival node of every duty period that ends at that
crewbase is connected to the sink.

Many more rules are satisfied by all paths from source to sink in the
duty period network than the flight network. However, there are still
some rules, such as the 8-in-24 rule and the no repeating flight rule



for nonconsecutive duties, that cannot be enforced through the network
structure.

14.4.2.2 Pairing Enumeration. Duty period enumeration
can be accomplished by a depth-first search approach on the flight net-
work. For each flight arc we construct all duty periods that start with
this flight. We attempt to extend the duty period with a flight if there
is a corresponding sit connection arc in the flight network and all of
the other duty feasibility rules are satisfied. In order to enumerate all
duty periods we have to backtrack whenever we have exploited all sit
connection arcs originating at a node corresponding to a flight arrival.

Pairings can be enumerated in a similar way either from the flight
network or from the duty period network. In pairing enumeration the
generation is started from every flight or duty that originates at a crew
base. Depth-first search is then used to extend partial pairings or back-
track.

Partial Generation of Pairings Several methodologies for the crew
pairing problem require a generation of only a subset of pairings since all
of them cannot be handled explicitly. An easy way to achieve this is by
generating pairings only on a subset of flights. This approach is taken in
Anbil et al., 1991 and Gershkoff, 1989. It is substantially more difficult to
generate a subset of pairings that cover all of the flights in the schedule.
Andersson et al., 1998 give some details on how this operation is carried
out at Carmen Crew Pairing. To generate a subset of pairings, for each
flight they limit the number of possible connections. A certain number
of short connections is selected and possibly some historically useful
connections. Their idea is to solve a flight matching problem for each
airport before pairing enumeration. Knowledge of ‘good’ connections is
essential. Moreover, an experienced user might also prune the generation
by recognizing useless connections.

Klabjan et al., 2001b propose the generation of random pairings.
When extending a branch during enumeration, they choose connections
at random. They use the connection times as greedy estimates; that
is, the probability of selecting a connection depends on the connection
time. Given that short connections are more likely to yield pairings with
low cost, the smaller the connection time, the larger the probability of
selecting the connection. Because in hub-and-spoke flight networks there
are many connections, the connection selection strategy has to be im-
plemented carefully. They propose a similar approach for generating
random duties. Based on this random pairing generation they develop
an algorithm for the crew pairing problem.
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14.4.3 Solving the LP relaxation
Early work on approximately solving the LP relaxation of (14.1) in-

volves considering a large number of pairings and solving the LP relax-
ation over these pairings. Anbil et al., 1992 found an optimal solution to
the LP relaxation of (14.1) over a large subset of the pairings for an 800
flight instance of a U.S. domestic daily problem. Five and a half mil-
lion feasible pairings were enumerated and the optimal LP solution was
found over this set using a specialized approach referred to as SPRINT
in which several thousand columns are loaded into the LP solver and
the LP is optimized over those columns. Then, most of the nonbasic
columns are discarded, and several thousand more columns are added.
This process is continued until all columns have been considered. At
the end, however, it is necessary to price out all nonbasic columns to
prove optimality. Bixby et al., 1992 used a combination of an interior
point method and the simplex method to find the optimal LP solution
to a very large crew pairing model. Hu and Johnson, 1999 propose a
primal-dual algorithm for solving the LP relaxation over a given num-
ber of pairings. Their algorithm maintains a dual feasible vector and
in every iteration increases the objective value by considering convex
combinations of dual solutions.

As optimization solvers and computers became more sophisticated,
there was a shift to dynamic column generation techniques that implic-
itly consider all possible pairings in solving the LP relaxation, Anbil
et al., 1994, Desaulniers et al., 1998. In column generation the set par-
titioning problem with all possible pairings is referred to as the master
problem. Thus (14.1) is the master problem. A restricted master prob-
lem is one that contains only a subset of the possible pairing columns.
The column generation algorithm to solve the crew pairing LP involves
the following steps:

Step 1: Solve the Restricted Master Problem– Find the optimal
solution to the current restricted master problem containing only
a subset of all columns.

Step 2: Solve the Pricing Subproblem– Generate one or more columns
that may improve the solution. If no columns are found, STOP:
the LP relaxation is solved.

Step 3: Construct a New Restricted Master Problem– Add to the
restricted master problem the columns generated in solving the
subproblem and return to Step 1.



The solution and construction of the restricted master problem (steps
1 and 3) can be achieved using optimization software such as CPLEX or
OSL. The solution of the pricing subproblem (step 2), however, should be
tailored to exploit the network structure of the problem. The idea is to
represent every pairing as a path in a network so that the huge number
of pairings can be represented efficiently. This network is then used
to identify variables that may improve the solution, without examining
all variables. This often can be achieved either by solving multi-label
shortest path problems on the specially structured network, Desrochers
and Soumis, 1989, or by enumeration, Marsten, 1994 and Makri and
Klabjan, 2001.

14.4.3.1 Considerations in Solving the Restricted Master
Subproblem. Until recently it was believed that the primal sim-
plex algorithm is the most efficient procedure for solving the restricted
master subproblem. Given that a primal solution is available from the
previous iteration, primal simplex can be warm started. However primal
simplex has two drawbacks. First, the LP relaxations of (14.1) tend to
be extremely degenerate and therefore primal simplex tend to perform
many degenerate steps, and second, the extreme point optimal dual so-
lutions give misleading reduced costs and several iterations of column
generation are needed. A standard trick for removing degeneracy is to
randomly perturb the right hand sides. After the perturbed LP is solved,
the perturbation is removed and the LP is solved to optimality. A dif-
ferent approach is presented in du Merle et al., 1999 by adding surplus
and slack variables with penalties. This corresponds to requiring soft
lower and upper bounds on the dual variables and penalizing the dual
variables if they lie outside the bounds. For crew pairing problems this
technique substantially reduces the number of iterations in column gen-
eration. Interior point algorithms yield an interior point dual solution,
which is a much better indicator of the ‘usefulness’ of a column, but lack
the benefit of warm starting.

Barahona and Anbil, 1998 and Barahona and Anbil, 1999 propose a
variant of the subgradient algorithm, which they call the volume algo-
rithm. At every iteration the dual vector is improved in the direction of
the subgradient and a primal feasible solution is obtained by taking a
convex combination of previously obtained primal feasible vectors. The
volume algorithm is fast, does not have large memory requirements, and
it produces excellent dual vectors for use in column generation. Bara-
hona and Anbil, 1999 claim significant performance improvements over
both interior point and simplex algorithms.
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14.4.3.2 Pricing. Pricing is the problem of selecting pairings
that are then added to the restricted master problem in step 2. There are
two main questions in pricing: what is the criteria to select the pairings
and how to find pairings that meet the criteria.

Traditionally, pairings are selected by the reduced cost criterion. Re-
cently alternative strategies have been proposed. Bixby et al., 1992 use
the pairing cost divided by the sum of the dual values of the legs in the
pairing as the selection criteria. They report a significant decrease in
the number of iterations. Hu and Johnson, 1999 present a primal-dual
algorithm to select the columns with the lowest reduced cost based on
a dual feasible vector, which is updated in every iteration. They also
report a significantly lower number of iterations. Another, yet unex-
plored, strategy in the context of column generation would be to use the
steepest edge pricing rule, Forrest and Goldfarb, 1992.

There are two approaches for finding pairings that best meet the se-
lection criteria. One is combinatorial by using a shortest path algorithm,
and the second is the brute force approach of enumerating the pairings.
In the following sections we describe both approaches.

Pricing with Shortest Path Algorithms Until recently shortest
path approaches have been designed only for the reduced cost criterion.
Many algorithms solve the pricing problem to find attractive pairings us-
ing multilabel or constrained shortest path methods on specially struc-
tured networks, Desrochers and Soumis, 1988. In either the flight or
the duty period network, only basic requirements can be built into the
network structure. Requirements that cannot be built into the network
structure are enforced through the use of labels. For example, we can
maintain a label to track the number of hours of flying in the current
duty period, the number of duties in the pairing, and the 8-in-24 rule. In
addition to the labels that control the pairing feasibility rules, we need
labels to capture the nonlinear components of the pairing cost structure.

Multilabel shortest path approaches differ from single-label approaches
in that it might be necessary to keep many paths to each intermediate
node in the network. For example, in solving the crew pairing problem,
often it is not known which of the cost factors will dominate or which
rules might prevent a path from resulting in a pairing until the complete
pairing is specified. Consequently, it is necessary to keep track of all non-
dominated paths to each node between s and t. A path is nondominated
if there does not exist another single path which is ‘better’ with respect
to all the costs and rules. By better, we mean that either it is cheaper
with respect to one of the cost criteria, or it is less restricted with respect
to one of the rules. For example, if two paths to the same node have



all labels identical except one has more time-away-from-base than the
other, by dominance the one with the larger time-away-from-base can
be eliminated.

Figure 14.4 illustrates a label update in a multilabel shortest path
procedure. Each path carries four labels: the first gives the flying time
in the current duty period, the second the elapsed time in the current
duty period, the third the number of segments in the current duty period,
and the final one, the number of duties in the pairing. At the arrival
node of arc A the label values are (3.0, 6.0, 2, 1). For the arrival node of
arc B the labels are (4.0, 5.0, 4, 1). Now consider the departure node of
arc C. Two connection arcs both terminate at that node. The connection
arc from flight A has a duration of two hours and the connection from
flight B has a duration of one hour. Thus the two possible paths will
have labels (3.0, 8.0, 2, 1) and (4.0, 7.0, 4, 1) respectively. Neither path
can be eliminated by dominance because one contains less flying time
and the other less elapsed time. Thus, we must now maintain two sets of
labels at the departure node of flight C. Note that in this simple example
we have only a small number of labels. As the number of labels grows,
it is generally more difficult to eliminate paths by dominance so that a
large number of potential paths to each node must be stored.

Lavoie et al., 1988 and others were successful in using the multi-label
shortest path procedure to solve the pricing subproblem over duty-based
networks. This approach works especially well when the number of duty
periods is not excessive, as demonstrated by Anbil et al., 1994, who used
a duty-based network to solve international crew problems containing
about two to three times as many duties as flights. Vance et al., 1997a
were also successful in using a duty period network to solve a relatively
small domestic daily problem.

Figure 14.4. Constrained Shortest Path Example
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Pricing By Enumeration The approach of generating all the pair-
ings is an alternative solution to pricing. Note that the pairing feasibility
rules and the cost structure are very complex and therefore a shortest
path approach typically requires many labels, which makes dominated
paths a rare occurrence. In addition, it might not even be possible to
capture some of the feasibility rules with labels. If a change or an up-
date of a feasibility rule is required, major changes in the shortest path
code might be necessary. Therefore crew scheduling software vendors
prefer to use pairing enumeration in pricing because they have many
customers, each with its own feasibility rules.

For medium and large crew pairing instances enumerating all the pair-
ings can be prohibitive and therefore strategies have to be designed to
avoid this. Marsten, 1994 and Anbil et al., 1998 describe crew pair-
ing optimizers that use partial enumeration in pricing. Both of these
approaches use the reduced cost criterion.

Makri and Klabjan, 2001 use the selection criterion, introduced by
Bixby et al., 1992,

min
p∈P

{ cp∑
i∈p y∗i

|
∑
i∈p

y∗i > 0} ,

where y∗ is the optimal dual vector to the restricted master subprob-
lem. Pairings are enumerated, however they prune the enumeration by
providing upper bounds on the score of a pairing p, which is defined as

cp∑
i∈p y∗i

.

14.4.4 Finding Good Solutions to the IP
Most state-of-the-art approaches combine column generation for solv-

ing the LP relaxation of the set partitioning problem with a branch-and-
bound algorithm to find good integer solutions. Because of the large
number of possible pairings, for all but the smallest problems, these
approaches are heuristic in nature. They fall into one of three general
classes. In the first class are algorithms where column generation is per-
formed ‘off-line’. That is, a subset of pairings is enumerated up front
and the integer program is solved to optimality over this subset. An
example of this type of approach can be found in Hoffman and Pad-
berg, 1993. Because even moderate sized problems can have billions of
variables, these approaches must work on a very small subset.

The second class of approaches uses dynamic column generation to
solve the LP relaxation of the set partitioning problem to optimality
or near optimality. Then, branch-and-bound is applied to obtain the
optimal IP solution over the subset of columns generated to solve the



LP relaxation. Among these approaches is work by Anbil et al., 1994 on
the international crew pairing problem and Ryan, 1992 on the rostering
problem. Recently Klabjan et al., 2001b proposed an algorithm that
solves the LP relaxation of (14.1) and then selects several million pairings
with low reduced cost to find an integer solution.

The drawback to these approaches is that there is no guarantee that
a good solution, or even a feasible solution, exists among a subset of
columns that give a good LP solution.

A third class of algorithms allow dynamic column generation through-
out the branch-and-bound tree. We refer to algorithms of this type as
branch-and-price approaches. Like branch-and-bound, a branch-and-
price procedure is a smart enumeration strategy in which an LP relax-
ation is solved at each node of a branch-and-bound tree. The difference
is that the huge constraint matrix requires the use of column generation.
Branch-and-price methodology has been applied to a number of prob-
lems in transportation, scheduling, and combinatorial optimization. For
a survey, see Barnhart et al., 1998.

Recently, a number of groups have developed crew pairing and roster-
ing algorithms using a branch-and-bound framework with column gener-
ation, including Desaulniers et al., 1998, Desrosiers et al., 1991, Gamache
et al., 1999, Gamache et al., 1998, Gamache and Soumis, 1998, Ryan,
1992, Vance et al., 1997a, and Anbil et al., 1998.

Marsten, 1994 combines dynamic pairing generation with variable fix-
ing to obtain good integer solutions. To find integer solutions, the vari-
ables associated with fractional pairings with value close to one are fixed
to one sequentially. To limit column generation, new pairings are gen-
erated only when the bound from the LP relaxation increases above a
pre-set target.

Andersson et al., 1998 decouple pairing generation from the optimiza-
tion engine. The algorithm generates pairings several times and solves
(14.1) over the generated columns. They use the Lagrangian algorithm
presented in Wedelin, 1995 to solve the integer programs.

14.4.4.1 Branching Rules for the Crew Pairing Problem.
To be able to generate pairings at any node in the branch-and-bound
tree, a branching rule that is compatible with the pairing generation
procedure is needed. The standard rule of branching on variable di-
chotomy is difficult to implement. Using such a branching decision, we
would either fix a pairing into the solution (xj = 1) or forbid the use of a
pairing (xj = 0) with each decision. It is easy to fix a pairing j into the
solution. There is no need to generate any more pairings containing any
of the flights covered by pairing j, so these flight arcs may be deleted
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from the pairing generation network. However, forbidding the use of a
specific pairing is difficult since we must forbid specific paths from be-
ing returned by the pairing generation procedure. This could require
finding the (k + 1)st shortest path if k pairings have been forbidden by
branching.

The first branching rule presented here is motivated by a general rule
for set partitioning problems developed by Ryan and Foster, 1981. Their
rule is based on the simple observation that given a fractional solution
to the LP relaxation of a set partitioning problem there must exist two
columns whose associated variables are fractional such that they both
contain coefficients of one in a common row r and there exists another
row s where one column has a coefficient of one and the other has a
coefficient of zero. This fact leads to a general branching rule where
pairs of rows r and s are required to be covered by the same column on
one branch and by different columns on the other.

Essentially the same logic can be used for crew pairing optimization,
but the rule is modified to maintain tractability. In general, it is difficult
to force two specific flights to either appear only in pairings that contain
them both (the first branch) or to never appear together in the same
pairing (the second branch). However, it is an easy matter to force two
flights to appear consecutively in a pairing or not. If flights r and s
satisfy the conditions of the Ryan and Foster rule and they appear con-
secutively in at least one of the fractional pairings that contains them
both, branching can be performed by requiring that they appear con-
secutively in the pairing that covers them at one node and by requiring
that they cannot appear consecutively in any pairing in the solution at
the other node. This strategy is sometimes referred to as branching on
follow-ons because it places restrictions on which flights can follow flight
r in the solution. The flight pair r, s is often termed a follow-on.

Klabjan et al., 2001b present a different branching rule called time-
line branching. In timeline branching the decision is based on a flight
r and a time t. In one branch we only allow pairings with time of the
connection immediately following r less than or equal to t. The other
branch considers only pairings with time greater than t of the connection
immediately following r. They show that this is a valid branching rule
if the departure times are all different, which can be achieved by slightly
perturbing them. They also combine follow-on branching or timeline
branching with strong branching. Strong branching is a branching rule
that chooses the branching variable (follow-on in the context of crew
pairing) by carrying out several dual simplex iterations for each branch-
ing candidate to estimate the change in the lower bound, Bixby et al.,
1995, Linderoth and Savelsbergh, 1999.



Master Problem Modification. We discuss the modifications
to the master problem for follow-on branching. For timeline branching
the modifications are similar. To implement follow-on branching, both
the master problem with its existing set of columns and the column
generation subproblem must be modified. On the branch where flight
r must be followed by flight s in the same pairing, any pairing in the
restricted master problem that contains r and/or s but does not have
the two flights appearing consecutively is eliminated. On the branch
where the flights cannot appear consecutively, any pairing with r and s
consecutive is eliminated from the restricted master problem.

Flight Network Modification. If a flight network is used, flight
s can be required to follow flight r by eliminating all the connection
arcs out of r except the one to s. Connections into s from any flight
other than r are also deleted. Note that this second modification is not
absolutely necessary since requiring r to be followed by s is sufficient
to ensure that s will not be preceded by a flight other than r in any
pairing in the basis. However, for the subproblem, it is computationally
advantageous to eliminate as many arcs as possible when a branching
decision is fixed. Forbidding the connection is implemented by elimi-
nating the arc connecting r to s. These network modifications can be
accomplished by removing the arcs or by giving them a very high cost so
that they will not be used in attractive pairings. The second approach
is generally preferable since it simplifies many of the bookkeeping issues
associated with storing the network structure and enables the same net-
work (with modified costs) to be used to generate pairings at any node
in the branch-and-bound tree.

Duty Period Network Modification. If a duty period network
is used, the implementation will depend on whether the connection be-
tween flights r and s is an overnight rest. A connection within a duty
period (not an overnight) can be required by eliminating all duties that
contain either flight but do not have them appearing consecutively. The
connection can be forbidden by eliminating all duty periods containing
r and s consecutively. A connection that is an overnight rest can be
required by eliminating all duties containing flight r that do not end
in r and all duties containing s that do not begin with s. Then arcs
connecting any duty period ending in r to a duty period that does not
begin with s are deleted, as well as arcs connecting a duty period ending
in a flight other than r to a duty period beginning with s. To forbid the
connection, we delete connection arcs from any duty period ending in r
to a duty period beginning in s.
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From the above discussion, we see that the branch on follow-on rule
can be implemented with either type of pairing generation network sim-
ply by eliminating arcs from the network.

14.4.5 Parallel Approaches to Crew Pairing
Crew pairing problems with as few as 300 legs for hub-and-spoke net-

works or 2000 legs for point-to-point networks can take as much as 10 to
20 hours of CPU time to solve even approximately. This is particularly
problematic when conducting ‘what-if’ analysis. One way to decrease
computation time is to employ parallel algorithms for crew pairing. How-
ever, the crew pairing model (14.1) is an integer program and parallel
algorithms for integer programs typically do not scale well. Thus, de-
signing parallel algorithms for the crew pairing problem is a challenging
problem that has only recently begun to be studied.

One of the most time intensive parts of most crew pairing algorithms
is pairing generation. The basic idea of a parallel algorithm for pair-
ing generation is to distribute the legs originating at crewbases (called
starting legs) among the processors, with each processor enumerating all
the pairings starting with the assigned starting legs. Since the compu-
tational times to generate all the pairings starting with a given leg can
vary substantially, load balancing algorithms are needed. Goumopoulos
et al., 1997 propose a pulling algorithm based on the master/workers
paradigm. The master distributes the legs one by one to the workers.
Whenever a worker becomes idle, it queries the master for a new starting
leg. Klabjan and Schwan, 2000 eliminate the master with the processors
exchanging the workload among themselves.

In other research, Alefragis et al., 1998, Sanders et al., 1999, and Ale-
fragis et al., 2000 focus on parallelizing the pairing enumeration and the
Lagrangian decomposition algorithm of Andersson et al., 1998. Since
the latter algorithm is inherently sequential, they describe the steps
for parallelizing an iteration of the algorithm, i.e. updating the La-
grangian multipliers and computing the subgradient. They compute the
constraints in parallel and distribute the variables among the proces-
sors. Note that due to the fine grain parallelism, this algorithm does
not perform well on architectures with high latency such as a cluster of
workstations.

An entirely different approach is given in Klabjan et al., 2001b. The
LP relaxation is solved in parallel by generating the pairings in parallel
and in each iteration the LP is solved with the parallel primal-dual
algorithm, Klabjan et al., 2000. The IP over a small subset of pairings
is solved with a branch-and-bound algorithm that executes the strong



branching rule in parallel. The pairing enumeration algorithm is scalable
but the parallel primal-dual algorithm scales only to 20 processors.

The most promising algorithms for parallelization are branch-and-
price since coarse granularity is easily achievable by evaluating the branch-
and-bound nodes in parallel. Gedron and Crainic, 1994 give a survey on
parallel branch-and-bound algorithms. Klabjan, 2001 describes a par-
allel branch-and-price algorithm. The algorithm evaluates the branch-
and-bound nodes in parallel and in addition, each node is evaluated in
parallel. An LP relaxation is solved in parallel by embedding parallel
column generation in the parallel primal-dual algorithm.

14.4.6 Open Issues
There are still a number of open questions regarding the best method

for crew pairing optimization. Whether to use dynamic network-based
pairing generation or a fast pricing procedure like SPRINT is not clear.
If pairings can be enumerated quickly and accessed off-line in an efficient
manner, the SPRINT approach may be preferable to network-based gen-
eration. If network-based generation is used, the type of network that
will perform most efficiently might be highly schedule-dependent. For
point-to-point crew pairing problems, duty period based networks have
proven to be efficient because the number of possible duty periods grows
relatively slowly with the number of possible flights. However, for hub-
and-spoke networks, the results have been mixed. Another open issue
is how to manage effectively the number of pairings in the constraint
matrix; that is, how many pairings to add at each iteration and whether
or not to delete pairings with high reduced cost.

14.4.7 Crew Rostering Solution Approaches
The solution approaches described above apply to both the crew pair-

ing and crew assignment problems. We conclude by briefly highlighting
some of the research conducted specifically for the crew rostering version
of the crew assignment problem. We also introduce an alternative ap-
proach to generating schedules that has been used in the crew rostering
literature but could also be applied to crew pairing generation.

14.4.7.1 Computational Results. Ryan, 1992 solves crew
rostering problems with 55 crew members and 120 pairings. This results
in problems containing as many as 300,000 variables, with solution times
ranging from less than 10 minutes to 2-3 hours.

Gamache et al., 1998 construct individualized monthly work sched-
ules for pilots and officers. Schedules are selected for assignment to crew
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members based on considerations of individual preferences and seniority
restrictions. They solve 24 instances of problems at Air Canada, con-
taining up to 108 pilots and 568 pairings. Using cutting planes, solution
times range from 1 to 8 hours.

14.4.7.2 A Constraint Programming Approach. In some
cases, there exist schedule rules and regulations that cannot easily be
captured in a constrained shortest path approach. Moreover, pricing
by enumeration may be intractable. Recently constraint programming
(CP) approaches to rostering have been proposed. Thorough discussions
of CP can be found in Lustig and Puget, 2001 and Brailsford et al., 1999.

An example of how constraint programming has been used in crew
assignment can be found in the work of Fahle et al., 1999 and Junker
et al., 1999. They use CP to solve the pricing problem for generating
columns in the crew assignment problem of a major European airline.
For each crew, they define a variable that represents the set of duties
to be assigned to that crew. The domain contains all feasible subsets
of the set of duties to be covered. They are able to specify constraints
that capture all of the crew rules and regulations. In addition, they
incorporate a shortest path component that leverages dual information
from the restricted master. This allows them to reduce the search space
significantly. They are able to solve real-world problems successfully,
incorporating constraints that could not be captured in a constrained
shortest path approach.

14.5 Integrating Crew Pairing with
Maintenance Routing and Schedule Design

In airline planning, the schedule design, fleet assignment and mainte-
nance routing problems are all solved before the crew scheduling prob-
lem. Their solutions then impact the input to crew pairing. For example,
by assigning aircraft types to flights in the fleet assignment problem, we
partition the flights into smaller sets and solve a separate crew scheduling
problem for each of these sets, since individual crews can only fly cer-
tain aircraft types. Thus, solving these planning problems sequentially
can lead to sub-optimalities, because decisions are made in the earlier
problems without taking into account their impact on crew scheduling.
A fully integrated approach to the airline planning process is quite diffi-
cult, due to its enormous size and complexity. Nonetheless, benefits can
be gained by partially integrating elements of the planning process. We
provide examples of this in the sections that follow.



14.5.1 Crew Pairing and Maintenance Routing
Although crew scheduling assigns crews and maintenance routing as-

signs aircraft, there is a connection between these two problems. Specif-
ically, this connection deals with the amount of time required between
two flights for a connection to be crew-feasible. Recall that there is a
minimum idle time required between two consecutive flights in a duty
period. This time is needed, in part, so that the crew can move through
the terminal from the arrival gate of the first flight to the departure gate
of the second flight. However, if both of these flights have been assigned
to the same aircraft in the maintenance routing problem, then the crew
will remain with the aircraft and therefore this time restriction can be
relaxed. Such a crew connection, which is feasible only if both flights
share a common aircraft in the maintenance routing solution, is known
as a forced turn.

When constructing a network for the crew pairing problem, we begin
with the set of connections that have adequate sit time and then add to
this set those forced turns implied by the maintenance routing solution.
These additional connections permit new pairing opportunities and thus
can improve the quality of the crew pairing solution. However, because
the forced turns are determined in the maintenance routing problem
without taking into account the crew pairing objective, solving these
two problems sequentially can lead to sub-optimal results.

This potential for sub-optimality is demonstrated in the following ex-
ample, taken from Cohn and Barnhart, 2002. Consider a network of
eight flights, denoted A through H. As shown in Figure 14.5, this net-
work has three potential forced turns, two different feasible solutions
to the maintenance routing problem (denoted by MR), and four poten-
tial pairings. For each of the maintenance solutions, only a subset of
the pairings are feasible, depending on the forced turns implied by the
maintenance solution. Thus, given maintenance solution 1, the cost of
an optimal crew pairing solution is $7, while maintenance solution 2
yields a crew pairing problem whose optimal cost is $5.

This small example highlights how a sequential approach to the main-
tenance routing and crew pairing problems can lead to sub-optimal re-
sults. Three different approaches have appeared in the literature to
address this.

In the first approach, Klabjan et al., 2002 solve the crew pairing prob-
lem before they solve the maintenance routing problem. They include all
potential forced turns in the crew pairing network. Those forced turns
contained in the crew pairing solution then become required aircraft
turns when solving the maintenance routing problem. Although this ap-
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Figure 14.5. Integrated Example

proach can potentially lead to maintenance infeasibility, in practice they
found feasible solutions for many hub-and-spoke flight networks. Addi-
tionally, note that whenever a feasible crew pairing solution is found to
be maintenance feasible, this solution is in fact optimal for the integrated
problems, when the maintenance routing problem is a feasibility rather
than an optimization problem. Furthermore, their approach requires no
more computational effort than the original sequential approach.

In the second approach, Cordeau et al., 2001 present an integrated
model that guarantees maintenance feasibility. They maintain the orig-
inal string-based maintenance routing and crew pairing formulations.
Like Klabjan et al., 2002, they include all potential forced turns in the
crew pairing network. They then link the two models by adding one
constraint for each potential forced turn. The constraint for forced turn
t states that the number of chosen crew pairings containing forced turn
t cannot exceed the number of chosen maintenance routes that contain
it. This results in a large-scale integer program which they solve by
branch-and-bound, where the LP relaxations are solved by using a Ben-
ders decomposition approach and column generation.

A third approach is found in Cohn and Barnhart, 2002. Their ap-
proach is similar to that of Cordeau et al., 2001, but in place of mainte-
nance string variables, they use variables representing complete solutions
to the maintenance routing problem. This dramatically reduces the
number of constraints, because all of the original maintenance routing
constraints are replaced by a single convexity constraint. This reduction
in constraints comes at the cost of a potential explosion in the number
of variables. However, they prove that only a small subset of the fea-
sible maintenance solutions need to be considered to ensure an optimal
result, thereby greatly reducing the size of the problem. Furthermore,
they prove that the integrality of the maintenance solution variables can



be relaxed. Thus, their integrated maintenance routing and crew pairing
model has no more binary decision variables than the basic crew pairing
model alone.

14.5.2 Crew Pairing and Schedule Planning
Klabjan et al., 2002 study the impact of flight departure times on the

crew pairing problem. If we are allowed to change the flight departure
times, then some paths in the duty period network that do not satisfy all
of the pairing feasibility rules might correspond to a pairing in a retimed
flight schedule. Consider two flights i and j depicted in Figure 14.6. In
the original schedule, leg j cannot follow leg i in a pairing because it
violates the minimum sit connection time. However if leg j departs 5
minutes later, then the connection becomes feasible. In a retimed flight
schedule, additional paths in the duty period network become pairings
not only due to the minimum sit and rest connection times but also with
respect to the maximum duty elapsed time and the 8-in-24 rule.

Figure 14.6. Leg Retiming

The model in Klabjan et al., 2002 is identical to (14.1) except that
more columns are considered. They develop an algorithm that simulta-
neously generates paths in the duty period network and new departure
times such that the generated paths correspond to pairings in the re-
timed flight schedule. Each path defines its own flight departure times,
but given that in (14.1) every flight segment is covered by exactly one
pairing, the solution implies a single departure time for each leg.

They report computational experiments on large fleets of a U.S. do-
mestic carrier. A time window w of either 5 or 10 minutes is imposed,
i.e. every departure time can be changed by at most ±w. New flight de-
parture times should not diverge by much from the original times since
otherwise it would affect the fleeting cost and would substantially disrupt
passenger connections. On average, the improvement of pay-and-credit
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for w = 5 minutes is 25% and for w = 10, pay-and-credit decreases by
35%. These data clearly show that the crew cost can be substantially
reduced by slightly retiming departures.

14.5.3 Crew Pairing with Regularity
The crew pairing model (14.1) for the weekly problem minimizes the

weekly crew cost. However it is unlikely that the resulting pairings
could be repeated many times in the weekly horizon unless such rep-
etition constraints were specifically imposed. Thus the solution would
lack regularity. Regularity is important with respect to crew (and air-
craft) schedules, since regular solutions are much easier to implement
and manage, and, if possible, crews prefer to repeat itineraries.

In Section 14.2.2.1 we described the daily/weekly exceptions method-
ology for solving the weekly problem. This methodology, first, does not
necessarily find the minimum cost crew schedule even if the daily and the
weekly exception problems are solved to optimality and second it does
not directly take into account regularity. Klabjan et al., 2001a present
a new model, called the weekly crew pairing model with regularity, that
captures both the crew cost and regularity in a weekly schedule. They
solve the model in several stages, where in the first stage they obtain
pairings with the highest regularity, i.e. those that can repeat seven
days a week, in the second stage the algorithm yields pairings that can
be repeated six times in a week, and so forth.

By using approximations and integer programming as a heuristic, they
obtain solutions that improve on current practice with respect to both
regularity and cost. They report computational results on small and
large fleets of a major U.S. domestic carrier. The improvements on crew
cost range from 10% to 40% and their solutions have 40-60% higher
regularity.

14.6 The Crew Recovery Problem
An airline schedule rarely operates as planned. Maintenance prob-

lems, weather conditions, and other unplanned events cause frequent
disruptions – on a typical day, several flights will be delayed or can-
celed. Each disruption can propagate through the system, because it
impacts resources such as crews and aircraft that are also needed for
subsequent flights. The crew recovery problem considers how to modify
a crew schedule that has been affected by disruptions.

The recovery problem differs from the planning problem in several
ways. One of the most fundamental differences is in the time horizon for
solving the problem. Unlike the planning problem, which is solved as



part of a multi-week process, the recovery problem must be solved very
quickly – often, in minutes. Thus, the goal of the crew recovery problem
is to find a good solution quickly.

The second difference between recovery and planning is that the crew
recovery problem must take into account the recent flying history of the
active crews. Each crew’s options are limited as a function of the work
that has already been performed during the current pairing.

Third, reserve crews can be considered when solving the crew recovery
problem. These crews have a minimum guaranteed pay, measured in
flying hours, and cannot fly more than a designated monthly maximum.
This pay structure adds a further level of complexity to the problem.

Another difference is in the constraints that determine what consti-
tutes a feasible pairing. Most airlines use tighter restrictions in their
scheduling problems than are legally mandated by, for example, tighten-
ing the minimum rest connection time and the maximum duty elapsed
time. This is precisely so that they will have some added flexibility in
recovering from disruptions. In the recovery problem, on the other hand,
rules on flying hours are often pushed to their legal limits.

Perhaps the most significant difference between crew pairing and crew
recovery is in how the objective function is defined. When a schedule
is modified to address disruptions, active crews are usually paid at least
the cost of their originally scheduled pairings; if a crew is assigned to a
modified pairing that has higher cost, they receive the higher amount.
It is also desirable to keep down the additional costs incurred by reserve
crews. Furthermore, there are other objectives that are important as
well, such as returning to the original plan quickly and minimizing pas-
senger disruptions. In addition, crew decisions are not made in isolation.
They must be made in conjunction with decisions about delaying or can-
celing future flights, swapping aircraft, and further issues related to the
other resources that have been affected by the disruptions. The recov-
ery problem also faces a host of safety and labor constraints that restrict
what changes can be made. Therefore, even deciding what objective to
use when recovering from disruption can be a difficult question.

Thus, while crew recovery has much in common with crew pairing, it
also poses its own unique set of challenges. Although this problem has
been addressed in limited fashion in the literature, much work remains to
be done. In the following section, we present one approach to modeling
the crew recovery problem, which leverages its similarities with crew
pairing. In the subsequent section, we highlight some of the research on
solving the crew recovery problem.
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14.6.1 A Crew Recovery Model
We present a crew recovery model from Lettovský, 1997 and Lettovský

et al., 2000 that is similar to the crew pairing model. However, in this
recovery model, each pairing is specific to a particular crew. For a given
crew, all potential pairings begin at the next time and location that
the crew becomes available, i.e. at the end of their current flight or
rest period. Each potential pairing for a crew must not only take into
account work already completed in the current pairing when ensuring
that all rules and regulations are satisfied, but must also ensure the
legality of the crew’s remaining schedule. That is, there must be enough
time at the completion of this modified pairing for a sufficient rest period
before the next scheduled pairing is to begin, and restrictions that span
multiple pairings in a schedule (such as monthly flying time limits) must
not be violated.

The objective of this model is to minimize the cost of adjusted pair-
ings, reserve crews, and deadheaded crews, as well as the cost of cancel-
ing flights. The cancelation cost is the cost of re-assigning passengers to
other flights as well as hotel and meal costs for affected passengers and
some estimate of the loss of good will.

We define the following parameters:

e equipment type experiencing disruption (this may represent
several aircraft types if they are crew compatible),

Le set of flight segments to be covered by crews of equipment
type e,

Ke set of crews available for equipment type e (including
reserve crews),

Pk set of pairings that can be flown by crew k ∈ Ke,
cp cost of assigning pairing p,
dl cost of using flight segment l for deadheading,
qk cost estimate of returning the crew to its domicile,
fl cost estimate of canceling flight segment l,
βpl 1 if flight segment l is included in pairing p, 0 otherwise.



The variables are:

xp =

{
1 if pairing p is assigned to a crew,

0 otherwise,

vp =

{
1 if crew k has no pairing assigned,
0 otherwise,

yl =

{
1 if flight segment l is canceled,

0 otherwise,

wl = the number of crews deadheading on flight segment l.

The airline crew recovery problem for a given equipment type e is

min
∑

k∈Ke

∑
p∈Pk

cpxp +
∑
l∈Le

flyl

+
∑
l∈Le

dlwl +
∑

k∈Ke

qkvk∑
k∈Ke

∑
p∈Pk

βplxp + yl − wl = 1 for all l ∈ Le,∑
p∈Pk

xp + vk = 1 for all k ∈ Ke, (14.3)

wl + maxl · yl ≤ maxl for all l ∈ Le,

0 ≤ wl ≤ maxl for all l ∈ Le,

x binary, y binary, w ≥ 0, v ≥ 0 .

The first set of constraints guarantees that all flight segments are
either canceled or covered at least once. The slack variable on these
constraints, wl, has an upper bound maxl defined as the maximum
number of crews that can deadhead on flight segment l. The second
set of constraints ensures that crew k is either assigned to a pairing or
is deadheaded to its crewbase. The third set of constraints forces wl to
be zero if flight l is canceled. Note that the integrality of the variables
wl and vk are implied and hence need not be imposed.
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When solving the crew recovery problem, it is important to find a
good solution quickly. Furthermore, it makes sense to take advantage of
the fact that the original scheduled pairings were optimal in the undis-
rupted problem environment. Therefore, when solving the crew recovery
problem, we do not want to re-assign all crews. Instead, we want to con-
sider only those crews whose pairings were disrupted, as well as a small
number of additional crews deemed likely to introduce good ‘swapping’
opportunities. Limiting the scope of the problem in this way can sig-
nificantly reduce the size of the model and thus improve its tractability.
Heuristics for selecting the set of crews to be considered can be found in
Lettovský et al., 2000 and Lettovský, 1997.

14.6.2 Crew Recovery Solution Approaches
Very little has been published in the open literature on solving the

crew recovery problem. Teodorovic and Stojkovic, 1990 developed a se-
quential approach based on a dynamic programming algorithm, using
the first-in-first-out principle to minimize the crews’ ground time. Wei
and Yu, 1997 presented a heuristic-based framework for real-time crew
re-scheduling. Song et al., 1998 presented a multicommodity integer net-
work flow model and a heuristic search algorithm to solve it. Stojkovic
et al., 1998 presented a column generation approach similar to that used
for crew pairing problems. Solutions approaches to the crew recovery
model presented in the previous section can be found in Lettovský et al.,
2000 and Lettovský, 1997.

Models such as (14.3) can be solved to obtain optimal solutions for
small disruptions and good feasible solutions for medium sized disrup-
tions. However, for major disruptions such as those caused by snow-
storms, and particularly those disruptions that affect multiple airports,
further refinement and perhaps even a new approach altogether is needed.

14.6.3 Crew Rostering Recovery
We conclude this section by noting that one potential for inefficiency

in the crew recovery approach discussed above is that it limits changes
to the pairings currently underway. By requiring the modified pairings
to be feasible in conjunction with the remainder of the crew’s monthly
schedule, opportunities may be missed. On the other hand, considering
the entire schedule, rather than just the current pairings, yields an enor-
mous problem. Stojkovic et al., 1998 present an initial approach to this
challenging task.



14.7 Robustness in Crew Pairing
The crew pairing problem is solved well before the flight schedule

becomes operational. In this planning stage, all flights are assumed to
have departure times that are both fixed and known. This assumption
is often proven wrong when the crew schedule is actually implemented.
For example, the U.S. Department of Transportation reported that the
total number of delay minutes in the system (based on flight delays of
15 minutes or more) had increased by 11% from 1995 to 1999, Bond,
2000. In the summer of 2000, airline delays received national attention
in the U.S., when the airline with the best performance record had 25%
of its flights delayed by 15 minutes or more.

When crew members’ schedules are disrupted in operations, they are
nonetheless guaranteed to be paid for their original scheduled workload.
In addition, if delays increase their flying or sit time, they may be entitled
to added compensation. Furthermore, disruptions may require the use of
reserve crews to get back on schedule. Clearly, then, the cost associated
with implementing a crew pairing solution may vary significantly from
the planned cost. Typically, the planned ratio of pay-and-credit to flying
time is below 1% for large fleets, but increases on average to 4% when the
schedule is implemented. For smaller fleets, the ratio tends to increase
from about 3% to 8%. Solutions of large fleets are much more sensitive
to disruptions since they have many tight connections. A disrupted short
connection can have a significant impact on the entire flight and crew
schedule due to the snowball effects. Such increases in planned cost
can translate to millions of dollars in unplanned crew costs. There are
two ways that carriers can try to minimize these unplanned costs. The
first, discussed in Section 6, is to improve the quality of their recovery
procedures. The second is to focus in the planning stage on developing
more robust schedules – that is, to minimize the expected operational
cost of a schedule rather than its planned cost.

14.7.1 Evaluating Crew Schedules
Robustness is not well-defined, in fact, comparing two different sched-

ules to determine which one is more robust can be quite difficult. In
general, comparisons are done by using a simulation to approximate the
operating cost of a given schedule for a particular time period (typi-
cally, one month). Clearly, such a simulation should reflect the airline
operations as closely as possible.

Simulations of partial airline operations, for example, aircraft ground
movement and passenger flow, have been developed, see Yu, 1998. Only
recently have simulations of integrated airline operations been designed.
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Kornecki and Vargas, 2000, for example, developed a simulation designed
for employee training. Rosenberger et al., 2000 created SimAir, a sim-
ulation that takes into account most airline operations and has built-in
recovery modules. It keeps track of several types of resources, includ-
ing aircraft, crews, and passengers, and produces a number of statistics
such as crew costs and block times. Finally, Schaefer et al., 2000 use a
simulation-based approach to design more robust crew schedules.

14.7.2 Models for Robust Airline Crew Pairing
Here we present three approaches for finding robust crew pairings.

14.7.2.1 Expected Pairing Cost Approach. Schaefer et al.,
2000 solve a problem very similar to the crew pairing problem (14.1).
However, they replace the objective coefficients in this model with c̄p,
which they define to be the expected cost of pairing p. They then solve
this model with the same methodologies as presented in Section 14.4.

Of course, the difficult aspect of this problem is in computing the
cost coefficients c̄p, given that the expected cost of a pairing depends in
part on the other pairings in the crew schedule. For every pairing they
compute the expected cost by running Simair under the assumption
that the expected cost is independent of the other pairings in a crew
schedule. They show that this assumption holds under the push-back
recovery procedure. Push-back recovery delays the flights until all of the
resources are available.

Once they have computed cost coefficients they solve this modified
version of the crew pairing problem and then use SimAir to evaluate the
quality of their solutions. They report some interesting findings. For
example, they observe that it may be preferable to have some pairings
in which costs are determined by TAFB or the minimum guarantee pay,
rather than flying cost. In addition, they find crew schedules to be more
robust when the pay-and-credit of the pairings has low variance and
there are not many pairings with zero pay-and-credit. This is intuitive
because zero pay-and-credit pairings have minimal connection time and
are therefore vulnerable to disruptions.

Schaefer et al., 2000 compared this expected cost approach with a
penalty approach that includes penalties in the cost function for such
factors as tight connections and elapsed times, and tight 8-in-24 con-
straints. Better results were obtained by the expected cost model.

14.7.2.2 Maximizing the Connection Time. Ehrgott and
Ryan, 2001 and Yen and Birge, 2000 measure robustness as the excess



sit connection time above the minimum sit connection time. If k is
a sit connection and t is the connection time, they define a penalty
by wk(minSit − t), where wk is the penalty factor and minSit is the
minimum required sit connection time. They define the robustness cost
of a pairing as the sum of the penalties over all sit connections in the
pairing, excluding the sit connections corresponding to the aircraft turns.
Their models find a crew schedule that minimizes the robustness cost.

Yen and Birge, 2000 solve the resulting model as a stochastic integer
programming model by assuming that t is a random variable. Given a
crew schedule, the recourse problem is a large-scale LP. They develop
a heuristic based on follow-on branching for solving the model. They
sample 100 disruption scenarios and they show the computational results
on a problem with 3000 pairings and 50 legs. Their crew schedules
tend to have more sit connections corresponding to the aircraft turns
and longer connection times. Ehrgott and Ryan, 2001 assume that the
connection time t is deterministic and it is taken with respect to the
planned flight schedule. They give computational result on fleets from
Air New Zealand.

14.7.2.3 The Crew Pairing Model with Move-up Crews.
When a crew is delayed or has reached a limit on its flying time for
a duty or pairing, it would be highly desirable to have an alternative
crew available with which it could swap one or more flights. The crew
pairing model with move-up crews, presented in Klabjan et al., 2001c
and Chebalov and Klabjan, 2002, relies on a recovery procedure that
uses crew swaps. In addition to the traditional objective of minimizing
pairing costs, they introduce a new objective of maximizing the number
of opportunities for crew swapping. Thus, their model is a bicriteria
optimization model.

A move-up crew for a given flight i is a crew that is on the ground for
at least the minimum required connection time, originates at the same
crew base as the crew covering i, and the two involved crews finish their
respective pairings on the same day. If two crews can be swapped in
operations, then one crew is a move-up crew. The crew pairing model
with move-up crews maximizes the overall number of move-up crews
and is solved by a Lagrangian decomposition approach. Computational
results show that there are crew schedules with only a slightly higher
crew cost but 5 to 10 times more move-up crews than the crew schedules
obtained by solving (14.1). Moreover this approach, which attempts to
provide protection against uncertainty rather than modeling uncertainty,
can be combined with stochastic models that minimize expected cost
and/or incorporate penalties.
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14.8 Future Directions
Airline crew scheduling has been one of the great successes of op-

erations research, with decision support software installed at all major
airlines. Whereas a decade ago solutions to daily problems were typically
10-15% above the lower bound of flying cost, solutions are now typically
within at most 1-2% of the lower bound. This improvement in solution
quality translates to savings on the order of $50 million annually for a
large airline.

Nonetheless, airline crew scheduling is still an active research area
with many unsolved problems. We have discussed some recent work on
recovery and robust planning in Sections 14.6 and 14.7, but this is clearly
just the ‘tip of the iceberg’.

Benefits can be gained by developing more efficient schedules for
cabin crews. This problem has received less attention than cockpit crew
scheduling, both because cabin crews are significantly less costly and
also because it is a much larger problem.

Finally, and perhaps most challenging, is the integration of the crew
pairing, fleet assignment, and schedule planning problems, especially
since these problems are difficult to solve individually.
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