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Airline crew scheduling problem is a complex and difficult problem faced by all airline companies.
To tackle this problem, it was often decomposed into two subproblems solved successively. First, the air-
line crew-pairing problem, which consists on finding a set of trips – called pairings – i.e. sequences of
flights, starting and ending at a crew base, that cover all the flights planned for a given period of time.
Secondly, the airline crew rostering problem, which consists on assigning the pairings found by solving
the first subproblem, to the named airline crew members. For both problems, several rules and regula-
tions must be respected and costs minimized.

It is sure that this decomposition provides a convenient tool to handle the numerous and complex
restrictions, but it lacks, however, of a global treatment of the problem. For this purpose, in this study
we took the challenge of proposing a new way to solve both subproblems simultaneously. The proposed
approach is based on a hybrid genetic algorithm. In fact, three heuristics are developed here to tackle the
restriction rules within the GA’s process.

� 2008 Published by Elsevier B.V.
1. Introduction

Airline crew scheduling problem is a complex and difficult
problem faced by all airline companies. Indeed, the cost related
to the crew members constitutes the most important direct cost
supported by the airline company, after the fuel cost.

To tackle this problem, it was often decomposed into two sub-
problems solved successively. First, the airline crew-pairing prob-
lem, which consists on finding a set of trips – called pairings – i.e.
sequences of flights, starting and ending at a crew base, that cover
all the flights planned for a given period of time. Secondly, the
airline crew rostering problem, which consists on assigning the
pairings found by solving the first subproblem, to the named airline
crew members. For both problems, several rules and regulations
must be respected and costs minimized.

In our recent Ph.D. thesis [9], we first tackled successively these
two subproblems by means of a hybrid genetic algorithm.

The formulation of the first problem – the airline crew pairing –
was based on its decomposition according to the set of duty peri-
ods instead of pairing. We recall that a duty period is an one day
duration sequence of flights, i.e. an one day pairing; then the prob-
lem was solved by an extension and an improvement of Levine’s
algorithm [3]. For the second problem – the airline crew rostering
– we proposed a decomposition model to reduce the model com-
plexity related to its large size even for small size instances.
Elsevier B.V.
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Indeed, a new idea was applied, where only legal weekly rosters
are generated and assigned and the required monthly restrictions
are checked simultaneously. The resolution method used is a ge-
netic algorithm combined, this time, with a Simulated Annealing
approach. Even experimented on few instances, this innovating ap-
proach gives interesting results [10].

The following Fig. 1 illustrates the decomposed airline crew
scheduling process.

The second part of the thesis [9] is devoted to the simultaneous
treatment of the two problems as described in the present paper.
The motivation is double.

On the one hand, from a practical point of view, dealing with
these two dependant problems separately, lacks of a good estima-
tion of the real cost of the global schedule. Indeed, in the airline
crew-pairing problem, the total duration of the set of selected pair-
ings is minimized; however the real cost of a planning must be cal-
culated after the assignment of the pairings to the different crew
members is accomplished – i.e. after the airline crew rostering
problem is solved – since the crew members are payed a fixed sal-
ary for a given working time and an additional cost for each
exceeding hour.

On the other hand, the ‘‘optimal” set of pairings, provided by the
resolution of the airline crew-pairing problem, is determined with-
out considering the number and the availabilities of the different
crew members which are, also, known afterward while dealing
with the airline crew rostering problem.

To avoid these drawbacks, in this paper we attempt to propose
an effective approach to integrate the airline crew-pairing and
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Fig. 1. Airline crew scheduling.

1 The Brief and Debrief times, which are fixed by the airline company, are the
duration times necessary to a crew member to, respectively, begin and end his/her
working day.

2 Bases are the cities (airports) where the crew members are stationed.
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rostering problems in a single model and thus to solve them
simultaneously.

Again we proposed a genetic algorithm but clearly this one is
very different of those used to solve the two problems separately,
due to a completely different representation of the chromosomes
and thus a different initialization process and different operators.
For the same reason, the local search heuristics to which the genet-
ic algorithm is hybridized are news.

This paper is organized as follows: in Section 2 a brief over-
view of the problem and the literature is presented. In Section 3
the different steps of the approach, combining a genetic algorithm
with different local search heuristics, are summarized. Section 4 is
devoted to the detailed description of the applied genetic algo-
rithm, followed by the description of the local search heuristics
in Section 5. In Section 6 some computational results will be
presented.

2. Description of the problem

Basically, the airline crew scheduling problem is defined as the
problem of assigning a set of flights of a given kind of aircraft (the
aircraft routing problem), to a set of crew members of the same
category (in our case technical crew members: pilot, first officer
and instructor) able to fly this aircraft. Each crew member has a
personalized calendar of availability which takes into consider-
ation a set of previously assigned tasks, such like, training periods,
vacations, medical visits, annual leaves, etc.

2.1. The restriction rules

Several restrictions, in relation with the security rules, have to
be checked, namely:

� Daily restrictions: they are security rules that have to be
respected to build legal duty periods (i.e. one day duration
sequence of flights):
– the city of arrival of a flight is the same city of departure of
the flight that succeed it in the same duty period.

– the sit time between the consecutive flights must be within a
prescribed minimum and maximum sit times called minsit
and maxsit, respectively.

– the elapsed time of a duty period, including the briefing1 and
debriefing times, must be less than a maximum allowed value
called maxelapse which varies with the departure time of the
first flight in the duty period called earlytime.

– the total flying duration a duty period, called fly cannot
exceed a maximum allowed flying time called maxfly.

– the duty period must be composed of up to a maximum
number of flight segments called maxlegs.
� Pairings restrictions: pairings are sequences of duty periods going
from one to three days of duration such that:
– the city of arrival of a duty period is the same city of depar-

ture of the duty period that succeed it in the same pairing.
– each pairing must begin and end at the same crew base2

(‘‘Base-to-Base pairings”). However, if this condition cannot
be verified, the pairing will contain ‘‘deadhead” flights whose
role is to take the crews to their respective bases at the
end of a pairing, or from their bases in the beginning of the
pairing.

– the number of duty periods must be less than a maximum
number of duty periods called maxduties.

– the rest time between the consecutive duty periods of a pair-
ing must be within prescribed minimum and maximum rest
times called minrest and maxrest, respectively.

– the elapsed time of a pairing called TAFB (time away from
base) cannot exceed a maximum number of days called
maxday.
� Weekly restrictions: all restriction rules required for the con-
struction of legal personalized planning, of one week duration,
for each crew members. A weekly roster is a sequence of pair-
ings such that:
– the pairings and tasks within the same rosters must not

overlap.
– the total flying time of all pairings that make up the roster

must not exceed a maximum allowed flying time per week
called Tmax;w.

– each weekly roster must contain at least one free day (LWR:
Legal Weekly Rest).
� Monthly restrictions: all the restrictions required to build a legal
monthly personalized schedule for each crew member. Thus, a
monthly roster is a sequence of weekly rosters such that:
– the weekly rosters within the same schedule must not

overlap.
– the total flying time of all pairings that make up the schedule

must not exceed a maximum allowed flying time per month
called Tmax;m.

– the crew members receive a fixed wage for a minimum guar-
anteed number of working hours per month, called Tg , and a
supplementary amount for each exceeding flying hour.

Dealing with the integrated airline crew-pairing and rostering
problem means taking into consideration all the outlined restric-
tions simultaneously.
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2.2. The cost structure

By definition, the cost CDl, expressed in time, of a duty period l
is defined by

CDl ¼maxfmg1; f 1 � elapsedl; flylg;

where

� ‘‘mg1” is the minimum guaranteed number of hours;
� ‘‘f 1” is a fraction of the elapsed time (‘‘elapsedl”) of the duty

period;
� ‘‘flyl” is the flying time in the duty period.

On the other hand, the cost CPp of a pairing p, also expressed in
time, is the maximum of three quantities:

� a minimum guarantee ‘‘mg2” times the number of duties in the
pairing NDPp;

� a fraction ‘‘f 2” of the total elapsed time of the pairing ‘‘TAFBp”;
� the sum of the costs of the duties that make up the pairing.
CPp ¼max NDPp �mg2; f 2 � TAFBp;
X
d2p

CDd

( )
:

Usually, the following values are taken: mg1 ¼ 3 hours;f 1 ¼
4=7;mg2 ¼ 3 hours and f 2 ¼ 2=7.

Hence, let X be a solution of the problem, i.e. a set of legal sched-
ules for each crew member. We note by PRkðXÞ the set of pairings
assigned to the crew member k within the solution X. The cost
costkðXÞ related to the crew member k is defined by the following
formulation:

costkðXÞ ¼max 0;
X

p2PRkðXÞ
CPp

 !
� Tg

( )
� HS;

where HS is the monetary amount that the airline company must
pay for each exceeding flying hour. The total cost of a solution X
is thus

costðXÞ ¼
X
k2K

costkðXÞ;

where K is the set of all considered crew members.

2.3. The deviation function of a solution

It is always desirable that the total flying time (the workload) is
well distributed, among the different crew members, in an equita-
ble way.

If we denote by

� RFkðXÞ the real flying time of the crew member k according to
the solution X.

� AVf the average, or ideal, flying time for any crew member, i.e.
AVf ¼
P

k2K RFkðXÞ
jKj ;

we define the average deviation of a solution X as the function:

DVðXÞ ¼
X
k2K

jRFkðXÞ � AVf j:
2.4. The literature

The reader can refer to [9,10], or to the recent survey [1], for the
literature related to the separated treatment of each of the two
problems.
Only few studies attempted to approach the integrated airline
crew scheduling problem. The paper [4] presents a new idea in
which the problem is formulated as a large-size mixed integer lin-
ear program based on the set of all duty periods instead of few
ones. Different kind of constraints are considered, in relation with
the rosters building as well as the crew members availabilities and
compatibilities. However, the tackled problem is a special case of
an airline company where the pairings are not built but only duty
periods are considered.

In [7] a set of duty periods, that cover all the flights once, is built
from the set of aircraft routes. Afterward, a genetic algorithm is ap-
plied to assign the duty periods to the different crew members.
Here, a matrix-based representation of the chromosomes is used
and the fitness function is the aggregation of diverse penalties in
relation with the different restrictions violation. However, the
main drawback of this approach lies in the fact that, beside the var-
ious penalties that make a feasible solution hard to obtain, the first
set of duty periods stays unchanged during the GA iterations.

As far as our study is concerned, we apply a hybrid genetic algo-
rithm to solve the problem. However, and unlike [7], the set of ini-
tial duty periods change during the GA process to enable the
change within the structure of the duty periods themselves. In
addition, a unique penalty is considered (uncovered and over-cov-
ered flights) and a local search heuristic is developed to handle it.
We also introduced a second objective the average deviation.

Let us also mention two very recent studies:

� Guo et al. [2] analyzed almost the same problem but the integra-
tion is partial because their approach solved successively two
coupled components: firth the building of the pairings and then
the crew schedules.

� Mercier and Soumis [6] proposed an integration of two other
components of the general airline schedule problem, i.e. the
flight timing problem and the pairing problem.
3. Principle of the resolution scheme

3.1. Notations

The following notations will be considered throughout the
paper:
J set of the month days (index j 2 J)
K set of all crew members (index k 2 K)
I set of flight segments to be assigned (index i 2 I): I ¼

S
j2J Ij,

where Ij is the set of the flights of the day j
DP(j) set of all legal duty periods built during the day j
Ijl set of flights of the day j that constitute the duty period l

A solution X to the problem is a set of personalized schedules for
each available crew member. One can represent X by the assign-
ment of a set of feasible duty periods (i.e. a subset of

S
j2JDPðjÞ)

to the available crew members K.
We introduce the following terminology:

3.1.1. Legality of a solution
A solution X is said ‘‘legal” if all the restrictions associated to the

pairings, rosters and crew availabilities are satisfied.
In the case of illegal solution X; LðXÞ will be the list of couples

(crew, day) containing illegal assignment (i.e. a duty period which
is not compatible with the duty periods already assigned to the
crew member during the days j 2 J s:t: j–day). For a legal solution
X, we have LðXÞ ¼ ;.

3.1.2. Feasibility of a solution
Each flight must be covered exactly once. In case of unfeasible

solution, we denote by PenajðXÞ ¼ ncfjðXÞ þ ocfjðXÞ the penalty of
the day j associated with the solution X, where
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� ncfjðXÞ is the set of non covered flights during the day j, accord-
ing to the solution X.

� ocfjðXÞ is the set of over-covered flights during the day j, accord-
ing to the solution X.

For a feasible solution X we have PenaðXÞ ¼
P

j2JPenajðXÞ ¼ 0.
Obviously, the aim is to find a legal and feasible solution.

3.2. The objectives

We tackle a bi-objective optimization problem in a hierarchical
way:
– the main objective is to minimize the total cost costðXÞ;

– to differentiate between the equivalent solutions, we consider as

a second objective to minimize the deviation DVðXÞ.
3.3. Structure of the algorithm (see Fig. 2)

After the generation of all possible legal duty periods, roughly
speaking, the main idea of the proposed approach, is to assign
some of them to the crew members according to their own
availability.

After the building of the initial population of solutions in the
proposed GA, at each iteration of the GA we can distinguish two
main steps:

� The first step is based on a ‘‘multi-points crossover” or a ‘‘muta-
tion” operators applied to two selected solutions.
These operators consist mainly on reassigning certain duty peri-
ods among the different crew members while taking into
account to not violate any restriction and only constraints
related to the flights coverage can be breached. In other words,
Initialization
ni = 0

Selection: the roulette wheel.
nb = nb -1  

Multi-points crossover Mutation  

Pc

r =1

Select a number r ∈{0,1}

Heuristic “legality repair” 

nb =0
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nb = pop_size / 2 

ni = nb_iter

Stop

Yes No 
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The “Improved Feasibility Repair”
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The “Random Feasibility Repair”
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FFiirrsstt sstteepp  
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Fig. 2. The hybrid genetic algorithm process.
at this step, only non feasible solutions can possibly be consid-
ered and illegal ones could not.
For this purpose, the GA operators are first accomplished ‘‘care-
fully” by checking all the required restrictions and then are com-
bined with a local search heuristic called ‘‘Legality Repair
Heuristic” whose aim is to reestablish the legality of the differ-
ent pairings, and hence rosters, in order to obtain LðXÞ ¼ ; for
each considered solution X.

� In a second step, two heuristics are randomly applied to the
obtained individuals in order to reduce their penalty PenaðXÞ,
this time related to the flights cover, i.e. the feasibility of each
solution is improved.

To consider simultaneously:

– the necessity to find feasible solutions;

– the hierarchical optimization described above in 3.2.

The proposed fitness function will contain three terms, also
considered hierarchically in the following order:

- first the penalty PenaðXÞ: to obtain feasible solutions;
- secondly the cost costðXÞ: the main objective;
- finally the deviation from average DVðXÞ.

The algorithm will be given in detail in the following section.

4. The genetic algorithm

Genetic algorithms [8] are part of evolutionary computing, area
of artificial intelligence which is rapidly growing. Basically, the GA
begins with a set of solutions (represented by chromosomes) called
population. Solutions from one population are taken and used to
form a new population. This is motivated by a hope, that the
new population will be better than the old one. Solutions which
are then selected to form new solutions (offspring) are selected
according to their fitness – in our case the ‘‘roulette wheel” ap-
proach [8] is used – the more suitable they are the more chances
they have to reproduce. However, unlike the traditional one, in
the proposed genetic algorithm mutation and crossover operators
are applied alternatively according to a probability Pc.

Also, an ‘‘elitist” replacement of the individuals is used here,
where the best parent is selected to coexist with the best produced
individual (child).

Due to the difficulties to respect the legality and even the feasi-
bility of the solutions generated by the operators of the GA opera-
tors, it will be necessary to introduce at each iteration a
cooperation between this algorithm and some local search heuris-
tics, i.e. the ‘‘legality repair” and ‘‘feasibility repair” heuristics.

The following Fig. 2 represents the different steps of the hybrid
genetic algorithm process.

In the following subsections, different elements of the proposed
GA will be described: the chromosomes encoding in Section 4.1,
the initial population building in Section 4.2, the fitness function
definition in Section 4.3 and finally the multi-points crossover
and the mutation operators will be described in Sections 4.4 and
4.5, respectively. Section 5 will be devoted to the description of
the three heuristics.

4.1. The chromosomes

As the solutions have the same form as those from the ‘‘crew
rostering” problem (i.e. the second subproblem), their representa-
tion will be the same [10]. Nevertheless, there is an important
difference: here the pairings are not yet obtained as solution of
the ‘‘crew-pairing” problem (i.e. the first subproblem). So here, it
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is necessary to assign any duty periods to the crew members in-
stead of predefined pairings.

One can represent a solution X to the problem by a global sche-
dule of all crew members obtained by the assignment of a set of
feasible duty periods to the available crew members.

A gene xkj takes the value 0 if the crew member k is not assigned
to any duty period during the day j, (�1) in the case where the
crew member k isn’t available during the day j and a positive inte-
ger value xkj ¼ lðl > 0Þ which represents the code associated to the
duty period of the day j, belonging to DPðjÞ, assigned to the crew
member k.

Let us note by X ¼ ðX1; . . . ;Xj; . . . ;XjJjÞ the ðj J j � j K jÞ matrix,
where Xj is the ðj K j �1Þ column vector such that
xkj ¼
l if the duty period l 2 DPðjÞ is assigned to the crew member k;

0 if the crew member k is not assigned any task during the day j;
�1 if the crew member k is not available to work during the day j:

8><>:

Fig. 3. Flights-based graph.
4.2. Initialization

To build the initial population, of N individuals, one can proceed
randomly. However, owing to the diverse restrictions to check, we
propose here different ways to construct, as far as possible, a legal
solution X0

nðn ¼ 1; . . . ;NÞ in the initial population P0. For this pur-
pose, a subset fDPðjÞ of ‘‘interesting” duty periods must be built.

4.2.1. First step: duty periods determination
The first step consists to determinate, for each day j, a particular

subset fDPðjÞ of duty periods (from all possible ones, i.e.fDPðjÞ# DPðjÞ) which will be assigned to different crew members
farther.

However, to obtain this subset of duty periods one can proceed
according to one of the two following alternatives, namely:

(a) Initialization based on a linear programming.
The aim here, is to build a set of duty periods fDPðjÞ that cover all

the flights once. For this purpose, we formulate and solve optimally
a set partitioning problem PðjÞ associated with each day j 2 J de-
fined by

PðjÞ

min z ¼
P

l2DPðjÞ
yljP

l2DPðjÞ
aj

ilylj ¼ 1 8i 2 Ij

ylj 2 f0;1g 8l 2 DPðjÞ

8>>>><>>>>: ð1Þ

with the data

aj
il ¼

1 if the duty period l;of the day j;
contains the flight i ði 2 IjlÞ;

0 otherwise

8><>:
and the variables

ylj ¼
1 if the duty period l;of the day j;belongs to the solution;
0 otherwise

�

The constraints (1) ensure that each flight is covered exactly once.
The objective function consists in minimizing the number of se-
lected duty periods, i.e. the number of crew members to work dur-
ing the day j.

The problem PðjÞ can be solved by means of the CPLEX 9.0 solver
to obtain the set of duty periods fDPðjÞ for each day j.

(b) Heuristic-based initialization.
With the same aim, but unlike the precedent approach based on

a linear programming, here we proceed heuristically. For this pur-
pose, a flights-based graph GðjÞ ¼ ðVðjÞ; EðjÞÞ is build for each day
j 2 J, where the set of nodes VðjÞ represents the flights and EðjÞ is
the set of directed edges such that an edge ði; i0Þ denotes that the
flight i0 can follow the flight i in the same duty period (see Fig. 3).

It is evident that each source node in the graph are overlapping
flights and must thus be assigned to distinct crew members. Based
on this principle, we use the following greedy algorithm to build a
set of duty periods fDPðjÞ that covers all the flights once:

� Consider each source node (indegree 0) separately of the others
since each of them must be assigned to different crew members.

� For each source node, select randomly a feasible path according
to the applied restriction rules.
� Update the graph GðjÞ by removing all the nodes that have been
used (covered).

� Repeat these steps until all the nodes (flights) are covered.

Then, a set of feasible duty periods, of each day of the month, is
obtained. Henceforth, we note by fDPðjÞ the set of retained duty
periods during the day j.

More clearly fDPðjÞ covers exactly once the flights of the day j,
but fDPðjÞ is not necessary of minimal cardinality.

4.2.2. Second step: duty periods assignment
Afterward and once the set fDPðjÞ of duty periods is determined

for each day j by means of one of the outlined approaches, the ob-
tained duty periods are, assigned to the available crew members in
order to build a legal solution even if it’s not feasible (in the case
where the duty periods can not all be assigned). We proceed
‘‘day-by-day”.

For this purpose, let us note by DPj
kðXj�1Þ the subset of duty peri-

ods l 2 fDPðjÞ of the day j that can be assigned to the crew member
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k, from a legality point of view, according to the assignments of all
the previous days j0 ¼ 1; . . . ; ðj� 1Þ. ðDP1

kðX0Þ � fDPð1ÞÞ.
For this purpose, we proceed ‘‘pilot-by-pilot” as follows:

(0) initialization: put K ¼ f1; . . . ;Kg; Ij ¼ Ij.
(1) select randomly a crew member k 2 K .
(2) build DPj

kðXðj�1ÞÞ:

– if DPj

kðXðj�1ÞÞ ¼ ; then put xkj ¼ 0 and go to (4).
– else go to (3).
(3) select a duty period l 2 DPj
kðXðj�1ÞÞ that covers the largest

number of flights (if several then select one randomly);
put xkj ¼ l and Ij  Ij n Ijl:

– if Ij ¼ ; then stop; put xk0 j ¼ 0 8k0 2 K n fkg.
– else, put DPj

k0
ðXðj�1ÞÞ  DPj

k0
ðXðj�1ÞÞ n fl0jIjl0 \ Ijl–;g8k0 2

K n fkg.
(4) K  K n fkg:

– if K ¼ ; then stop.
– else, return to (1).
jj22 jjTT jj11 jj tt

Day 1 Day j Day |J| 

Crew 1 

kk11

kk22

Crew k 

kk tt

kkTT

Crew |K| 

Fig. 4. Selection of T distinct genes.
4.3. The fitness function

It is clear that even for the population initialization or after the
application of the GA operators, the feasibility of the obtained solu-
tions is not guaranteed. For this purpose, we propose here to asso-
ciate to each individual in the population a fitness function which
takes into consideration the case where the solution is feasible or
not. Moreover, this fitness function must also take into account
the two objectives outlined in Section 3.2.

For this purpose, we defined the fitness function associated to a
solution as the linear aggregation of three terms: the penalty term,
the total cost (expressed in time) and the deviation function.

So the function to be minimized will be of the form:

CTðXÞ ¼ b1PenaðXÞ þ b2costðXÞ þ DVðXÞ;

where the parameters b1 and b2 must be defined adequately to min-
imize hierarchically these three terms, i.e. the penalty first, then the
cost and then the deviation function.

The coefficient b1 must take a value that ensures that
b1PenaðXÞ � costðXÞ8 X, but nevertheless these two terms must
have comparable scales. Hence, we propose to define the coeffi-
cient b1 as follows.

First of all, for each day j 2 J we search for the duty period
lðjÞ 2 DPðjÞ having the largest cost (cf. Section 2.2), i.e. that verifies:

CDlðjÞ ¼ max
l2DPðjÞ

fCDlg:

Then, we build an illegal and non feasible solution in which we sup-
pose that each crew member is assigned to the duty period lðjÞ for
each day j of the month. Here, we suppose that a crew member
works during all the days of the month without any free day. Hence
the cost of any crew member k 2 K will be equal to (cf. Section 2.2):

costmax ¼
X
j2J

CDlðjÞ � Tg

�����
�����

 !
� HS:

Since we suppose that this cost is generated by every crew member,
if we define the coefficient b1 by b1 ¼ costmax� j K j, then we can en-
sure that b1PenaðXÞ � costðXÞ8X.

As the deviation term DVðXÞ must be considered only in case of
equivalent solutions according to the addition of the two first
terms, we defined the coefficient b2 for each population in the
GA, i.e. depending of the different solutions (individuals) Xn inside
the same population. Thus, this ensures that the hierarchical order
is respected within any population (any iteration) of the GA.
More precisely b2 must be chosen in such a way that:

b1PenaðXnÞP b2costðXnÞ 8n ¼ 1; . . . ;Ns:t:PenaðXÞ–0;
b2costðXnÞP DVðXnÞ 8n ¼ 1; . . . ;Ns:t:costðXÞ–0

�
(N is the size of the population)

)
b2 6 min

n¼1;...;Ns:t:costðXnÞ–0

b1PenaðXnÞ
costðXnÞ

n o
;

b2 P max
n¼1;...;Ns:t:costðXnÞ–0

DVðXnÞ
costðXnÞ

n o
:

8>><>>:
If we put

A ¼ min
n¼1;...;Ns:t:costðXnÞ–0

b1PenaðXnÞ
costðXnÞ

� �
and

B ¼ max
n¼1;...;Ns:t:costðXnÞ–0

DVðXnÞ
costðXnÞ

� �
we define b2 by

b2 ¼
AþB

2 if A–0;
B if A ¼ 0:

(

Thus, the fitness function proposed in this study takes the form:

FðXnÞ ¼ CTmax � CTðXnÞ
CTmax

where CTmax ¼maxn¼1;...;NfCTðXnÞg is the largest cost in the current
population.

4.4. The multi-points crossover operator

In [10], for the ‘‘airline crew rostering” problem, we used a two-
points crossover operator to exchange pairings between the two
parents solutions. Here, to be able to exchange several duty periods
assigned to different crew members, we adopt a multi-points
crossover operator.

Let us note by X and Y the two parents selected, by the roulette
wheel, from the population and let X0 and Y 0 be the two generated
new solutions. We recall that X and Y are ‘‘legal” solutions but not
necessary ‘‘feasible”.

We call a gene of a solution, a pair (crew k, day j) of this
solution.

The idea of the crossover operator is to exchange a certain num-
ber of genes between the solutions X and Y.

We randomly select:

� a number T, with 1 6 T 6 minfj K j; j J jg;
� T distinct genes ðkt ; jtÞ; t ¼ 1; . . . ; T within the solutions X and Y;

we have, thus, kt–kr and jt–jr for all t; r 2 f1; . . . ; Tg (see Fig. 4).
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These selected genes are candidates to be swapped between X
and Y. For this purpose, two versions of the crossover operator
are proposed.

(a) Simplified crossover.
In this simplified version, the exchange of these T genes is

achieved automatically in order to obtain the two new solutions
X0 and Y 0, i.e. x0kt jt

 ykt jt
and y0kt jt

 xkt jt for all t ¼ 1; . . . ; T and the
other genes are not changed.

Clearly, the legality of these two solutions X 0 and Y 0 is not as-
sured; for this reason, afterward the ‘‘legality repair heuristic” –
described farther in this paper (see Section 5.1) – will be applied.

(b) Probabilistic crossover.
In this second version, we proceed in two steps.

1. The genes whose content do not violate the legality of any solu-
tion X or Y are swapped similarly as in the version a).

2. For the others, the exchange will depend of the degree of non
feasibility of the solution, measured by the penalty of the day
jt . More precisely (with, for instance, solution X):
– if Penajt ððX n xkt jt Þ [ ykt jt

Þ 6 Penajt ðXÞ, then the switch is
accepted, i.e. x0kt jt

 ykt jt
;

– otherwise, the switch is accepted with a probability P
defined by:

P ¼ 1
Penajt ððX n xkt jt Þ [ ykt jt

Þ � Penajt ðXÞ þ 1
;

we have thus

ykt jt

with the probability P;
mains unchanged with probability 1� P.
x0kt jt
 

x0kt jt
re

This idea is inspired from the principle of the Simulated Anneal-
ing with the aim to generate solutions that are not too far from
feasibility.

Also, when all the genes t; t ¼ 1; . . . ; T are examined for both
solutions, X0 and Y 0 are not necessary legal solutions so the ‘‘legality
repair heuristic” will be applied to them.

4.5. The mutation operator

Recall that in the proposed genetic algorithm, either the cross-
over operator is applied, with a probability Pc, or the mutation
operator is applied to one of the two selected solutions, with the
probability 1� Pc.

The proposed mutation operator consists to select, randomly, a
day j from a chromosome X, and two distinct crew members k and
k0 from K such that xkj–� 1 and xk0 j–� 1 (see Fig. 5).
Fig. 5. The mutation operator.
Afterward, the genes xkj and xk0 j are switched even if the restric-
tion constraints are violated since this step is immediately fol-
lowed by the heuristic Legality Repair (see Section 5.1).

5. Local search heuristics

In this section, we describe the two local search heuristics: the
‘‘Legality Repair Heuristic” (cf. Section 5.1) and the ‘‘Feasibility Re-
pair Heuristic” (cf. Section 5.2).

As it is easier to obtain a legal solution that a feasible solution,
the first heuristic will always be successful but it will not be the
case with the second heuristic. Its aim is only to reduce the unfea-
sibility of a solution X and this is the reason of the presence of the
term PenaðXÞ in the fitness function (see Section 4.3).

5.1. The ‘‘Legality Repair Heuristic’’

This heuristic follows immediately the application of the GA
operators – crossover or mutation – and is applied to only illegal
solutions X, i.e. such that LðXÞ–;; recall that LðXÞ is the list of genes,
i.e. pairs (crew, day), containing duty periods that don’t respect all.
In fact, due to the GA’s operators (see Section 4), for a given solu-
tion X it may happen that a duty period l 2 DPðjÞ is assigned to a
crew member k without respecting all restrictions. Thus, the aim
by this heuristic is to ‘‘re-build” a new legal duty period which con-
tains as many flights from the set Ilj [ ncfjðXÞ as possible, where
l ¼ xkj.

The elements of LðXÞ are examined successively.
Let ðk; jÞ 2 LðXÞ and xkj ¼ l. We note by Nf ¼ Ilj [ ncfjðXÞ the set of

flights to consider (to cover).

(1) build a set DPj
kðXÞ of all possible legal duty periods that can

fit into the planning of the crew member k and contain, at
least one flight from Nf.

(2) select a duty period l0 2 DPj
kðXÞ that covers the maximum

number of flights from Nf; then put xkj  l0.
(3) if such a duty period does not exist (i.e. DPj

kðXÞ ¼ ;), then
replace the current duty period xkj by a free day, i.e.
xkj  0.Hence, the legality of any solution is guaranteed at
the end of this heuristic.
5.2. The ‘‘Feasibility Repair heuristics’’

Let us recall here that the feasibility of a solution is satisfied if
all the flights are covered one and only one time.

The aim here is to propose an heuristic approach that helps the
GA process, by decreasing the penalty of the encountered solutions
at each iteration of the GA and improve, thus, their feasibility.

We tested two versions of this heuristic, called ‘‘Random Feasi-
bility Repair” and ‘‘ Improved Feasibility Repair”, respectively.

Let X be a non feasible solution. For each flight i – we suppose
i 2 Ij – we note by ri the set of duty periods containing the flight
i in the solution:

ri ¼ fl 2 DPðjÞji 2 Ijl and 9k 2 Ks:t:xkj ¼ lg:

If j ri j¼ 1, i.e. the flight is covered exactly once. Thus, only flights
such that j ri j –1 are examined.

5.2.1. The ‘‘Random Feasibility Repair’’ heuristic (RFRH)

(1) If j ri j¼ 0 (the flight i is not covered by the solution) then:
select – if there exists at least one – randomly, a crew mem-
ber k that can be assigned to the flight i, replace the duty per-
iod already assigned to k for the day j – i.e. xkj – by another
one containing the flight i and, obviously, can fit into the
planning of the crew member k (to respect the legality of X).
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(2) If j ri j> 1 (the flight i is assigned to more than one crew
member and let Ki the set of these crew members); then
we proceed as follows:

– select randomly a crew member �k 2 Ki;
– leave the flight i in the planning of �k, i.e. do not change

x�kj;
– remove the flight i from the planning of all the other crew

members k 2 Ki n f�kg, so
� If possible, replace xkj by a duty period l that do not

contain the flight i ði R IjlÞ and obviously can be placed
in the planning of k while respecting all the restric-
tions (the legality of the solution is preserved).

� otherwise, xkj is set to zero.
5.2.2. The ‘‘Improved Feasibility Repair’’ heuristic (IFRH)

(1) If j ri j¼ 0 then we proceed as above in Section 5.2.1.
(2) If j ri j> 1 (the flight i is assigned to more than one crew

member and let Ki the set of these crew members) then
we proceed as follows:
(a) Initialization:

� We consider the set NfjðXÞ of interesting flights to

cover during the day j:
NfjðXÞ ¼
[
l2ri

Ijl [ ncfjðXÞ
� For each crew member k 2 Ki, we determine – by
means of a ‘‘Depth-first-search” approach – the set
DPj

kðXÞ of all possible legal duty periods compatible
with the roster of the crew member k according to
the solution X, i.e. those able to replace xkj.

� For each crew member k 2 Ki, we determine the set
DPj

kðXÞ of interesting and legal duty periods candidate
to replace xkj, i.e. those of DPj

kðXÞ containing at least
one flight of NfjðXÞ:
DPj
kðXÞ ¼ DPj

kðXÞ \ fljIjl \ NfjðXÞ–;g:

Then we consider

DPjðXÞ ¼
[
k2Ki

DPj
kðXÞ:

(b) Algorithm: the aim is to assign duty periods to the crew
members belonging to Ki such that the flight i is covered
exactly once and, also, the largest number of flights from
NfjðXÞis covered.
(i) Select a duty period l 2 DPjðXÞ, containing the flight i

and covering the largest number of flights: l is such
that

i 2 Ijl

jIjlj ¼ max
l02DPjðXÞ

jIjl0 j

8<: ð�Þ

and assign the duty period l to a crew member k, randomly chosen
among those such that l 2 DPj

kðXÞ: put xkj  l.
(ii) Updating:

Ki  Ki n fkg;
NfjðXÞ  NfjðXÞ n Ijl;

DPjðXÞ  DPjðXÞ n l:

(iii)
� Stop if NfjðXÞ ¼ ; and put xkj ¼ 0 8k 2 Ki or if

Ki ¼ ;.
� otherwise, go to (i) and repeat without consider-

ing, anymore, the condition ð�Þ mentioned above
since the flight i is already covered.
6. Computational results

At our knowledge, there is no benchmark on which we can test
our model, since this problem is a new idea that only few studies
have been done on (cf. Section 1). Hence, we applied the proposed
model on the real-life datasets (instance 1, instance 2) used in [10],
which deals the problem of assigning a set of pairings to a group of
crew members, as well as a new real-life problem (instance 3)
(these three tests are provided by the airline company ‘‘Air-
Algérie”):

� instance 1: assign 65 pairings, equals to 220 flights, to 5 pilots (of
the airplane B727) for the period going form 01/03/2004 to 31/
03/2004.

� instance 2: assign 155 pairings, equivalent to 631 flights, to 19
pilots (of the airplane AT72) for the period going from 01/05/
2005 to 31/05/2005.

� instance 3: A ‘‘fresh” problem which consists to assign 558 pair-
ings (equivalent to 1872 flights) to 68 pilots of the (New Gener-
ation ‘‘NG”) airplane (B736 and B738) on the period going from
01/03/2006 to 31/03/2006.

Also, for each of these problems a reference solution, represent-
ing the solution proposed by the airline company, is given (see
Table 1).

6.1. Best obtained results

Table 1 summarizes the dataset on which our model was ap-
plied as well as a comparison between the reference solution pro-
posed by the airline company and the best solution we found.

The second column of the table represents the total number of
all generated duty periods of the considered month independently
of the crew members availabilities (i.e.

P
j2JDPðjÞ); the third col-

umn indicates the interval within which the number of duty peri-
ods generated for the different days of the month varies, and thus,
also, the size of the set partitioning problem PðjÞ (see part (a) of
4.2.1). For instance, for test 1 the number of ‘‘daily” duty periods
go from 5 to 44 duty periods per day.

We must precise that, five independent runs, of 3000 iterations
of the G.A, were made for each test (see Section 6.2). These results
were obtained by taking as a probability of crossover Pc ¼ 0:7
(after comparison with 0.6, 0.5 and 0.75) for a population of 100
individuals (after comparison with 50 and 150 individuals).

Due to the extent of the proposed model, the outlined solution
was obtained after we made a serial of tests and comparison anal-
ysis. Hereafter, these analysis will be summarized in the next
section.

6.2. Comparative analysis

In this subsection the different alternatives, outlined in the pre-
vious sections, will be compared.

Recall that we introduced:

� two versions of the initialization phase: the first is based on a
linear programming (see part (a) of Section 4.2.1); the second
one is based on a heuristic (see part (b) of Section 4.2.1).These
two initializations are examined separately in points 6.2.2 and
6.2.1, respectively.

� Two versions of the crossover operator (see point 4.4) called,
respectively, ‘‘simplified” and ‘‘probabilistic” crossover. The
results of these two versions are described in Tables 2 and 4,
and Tables 3 and 5, respectively.

� Two versions of the ‘‘feasibility repair heuristic” (see points 5.2.1
and 5.2.2) called, respectively, ‘‘Random Feasibility Repair



Table 1
Dataset

Tests # Duty periodsP
j2J jDPðjÞj

� � # Columns ðDPðjÞÞ Reference solution X Our model’s best solution ~X

costðXÞ DVðXÞ costð~XÞ DVð~XÞ CPU time sc n iter

instance 1 595 5 6 Col: 6 44 450 75:26 0 00:08 0.10
instance 2 2333 28 6 Col: 6 121 0 272:04 0 00:50 0.43
instance 3 17485 278 6 Col: 6 1382 0 927:17 0 211:35 2.33

Table 2
Simplified crossover

Tests ‘‘RFRH” ‘‘IFRH” ‘‘RFRH” & ‘‘IFRH” CPU time

Best cost Best dev. Aver. dev. Best cost Best dev. Aver. dev. Best cost Best dev. Aver. dev.

instance 1 0 00:08 00:19 0 00:08 00:21 0 00:08 00:20 5 minutes 0
instance 2 0 01:22 01:29 0 00:52 01:20 0 01:00 01:11 21 minutes 30
instance 3 X X X 0 248:31 254:29 0 231:03 242:09 1 hour 56

Table 3
Probabilistic crossover

Tests ‘‘RFRH” ‘‘IFRH” ‘‘RFRH” & ‘‘IFRH” CPU time

Best cost Best dev. Aver. dev. Best cost Best dev. Aver. dev. Best cost Best dev. Aver. dev.

instance 1 0 00:08 00:16 0 00:08 00:15 0 00:08 00:14 5 minutes 30
instance 2 0 01:04 01:08 0 00:50 01:06 0 01:02 01:28 22 minutes 0
instance 3 X X X 0 230:15 243:44 0 230:41 234:52 1 hour 59
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Heuristic” (RFRH) and ‘‘Improved Feasibility Repair Heuris-
tic”(IFRH). The obtained results are presented in Tables 2–5.
6.2.1. The heuristic-based initialization
Recall (see part (a) of 4.2.1) that in this part, a flights-based

graph is built, first, then a set of legal duty periods is randomly
determined for each day of the month. These duty periods are then
assigned to the available crew members while building legal pair-
ings and rosters.

Probabilistic vs. simplified crossover. Hereafter, a comparison be-
tween the results obtained when we used the simplified crossover
against the probabilistic one:

In Tables 2 and 3 – and forthcoming Tables 4 and 5 – columns 2,
3 and 4 (columns 5, 6 and 7, respectively) give the cost ðcostðXÞÞ,
the deviation function ðDVðXÞÞ and the average value of the devia-
tions given by the five runs and obtained with the application of
the (RFRH) (IFRH, respectively).
Table 5
Probabilistic crossover

Tests ‘‘RFRH” ‘‘IFRH”

Best cost Best dev. Aver. dev. Best cost Best dev.

instance 1 0 00:08 00:19 0 00:08
instance 2 0 01:22 01:38 0 00:58
instance 3 X X X 0 211:35

Table 4
Simplified crossover

Tests ‘‘RFRH” ‘‘IFRH”

Best cost Best dev. Aver. dev. Best cost Best dev.

instance 1 0 00:08 00:21 0 00:08
instance 2 0 02:12 02:12 0 01:10
instance 3 X X X 0 223:55
The same results are given in columns 8, 9 and 10 but, this time,
when (RFRH) and (IFRH) are used successively: with a probability
0.5 RFRH (IFRH) is applied to both new individuals.

Finally, column 11 provides the total CPU time (on a Pentium IV,
2.5 GHz, 256 SDRAM) which is similar for each alternative.

It appears from these two tables

� That with RFRH we do not generate any feasible solution for the
instance 3, either applying the simplified or probabilistic
crossover.

� For all the other tests, and on the five independent runs, the
obtained solutions generate no cost (that is why it do not exist
any column ‘‘average cost” in Tables 2 and 3).

� For instance 1, we obtain with each alternative the same best
solution (which is probably the optimal one).

� For instances 2 and 3, ‘‘IFRH” and ‘‘RFRH&IFRH” give similar
results with a slight advantage for the second one, from the
‘‘RFRH” & ‘‘IFRH” CPU time

Aver. dev. Best cost Best dev. Aver. dev.

00:19 0 00:08 00:26 4 minutes 30
01:31 0 01:22 01:41 17 minutes 30

224:01 0 214:05 218:19 1 hour 40

‘‘RFRH” & ‘‘IFRH” CPU time

Aver. dev. Best cost Best dev. Aver. dev.

00:20 0 00:08 00:24 4 minutes 30
01:50 0 01:12 01:56 18 minutes 30

226:15 0 220:09 227:34 1 hour 48
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point of view of the ‘‘average deviation”. Nevertheless, the best
results are always obtained with ‘‘IFRH”.

� The probabilistic crossover is slightly better than those obtained
with the simplified crossover.
6.2.2. The linear programming-based initialization
Probabilistic vs. simplified crossover. First of all, the same obser-

vations of the preceding subsection can be given here, on basis of
Tables 4 and 5.

If we compare, now, the two proposed initializations each other,
the linear programming-based initialization appears better than
the heuristic-based one for instance 3, so when the size of the
problem become larger.

7. Conclusion

In the present paper, we proposed a new and efficient model
that enable us to formulate and solve the airline crew-pairing
and rostering problems simultaneously. The proposed resolution
approach is, principally, based on a hybrid genetic algorithm.

Nevertheless, many alternatives of this GA are proposed and
compared. In fact, a heuristic-based initialization is compared to
a linear programming-based one and, also, a probabilistic multi-
points crossover is compared to a simplified one. Moreover, and
with the aim to improve the feasibility of the obtained solutions,
two local search heuristics (‘‘RFRH” and ‘‘IFRH”) are combined to
the GA, separately first, and simultaneously, then.

Roughly speaking, the outlined results (Tables 2–5) confirmed
that the proposed model succeeds to solve the three, real-world,
tests in a short computing time knowing that the proposed ap-
proach tackles the airline crew-pairing and rostering problems
simultaneously.

More precisely, and with regards to the comparison of the dif-
ferent versions of the hybrid GA, one can conclude the following:

� Generally, the probabilistic multi-points crossover gives more
interesting value of the deviation (the best and average devia-
tion) compared with the simplified one probably because it pro-
vides more diversification since it’s inspired from the simulated
Annealing principle.

� The, heuristic ‘‘IFRH” is more efficient than the ‘‘RFRH” and espe-
cially for the large size instance instance 3 where the ‘‘RFRH”
failed to find any feasible solution on the 5 runs.

� The linear programming initialization is the best proposed alter-
native compared to the heuristic-based one, because, not only, it
provides the best deviation, but also, the first feasible solutions
were obtained after a few number of GA iterations: less than 10
iterations for instance 1, less than 40 iterations for instance 2
and less than 60 iterations for instance 3. This can be explained
by the fact the best set of duty periods covering all the flights
once are determined a priori.
� Finally, we have to precise that the best solutions of the previous
tables were, also, obtained early in the G.A (less than 500 itera-
tions for instance 1, less than 1000 iterations for instance 2 and
less than 2400 iterations for instance 3). Thus, the 3000 itera-
tions is the number of the GA iterations beyond which the best
found solution don’t change.

An interesting question is the comparison between the inte-
grated approach described in this paper and the classical non-inte-
grated approach, i.e. the successive resolution of the two
subproblems. Three facts result of a first comparison [9] based only
on the three instances of Section 6:

� the GA proposed in [9] is unable to solve the ‘‘airline crew
pairing” of instance 3 due to a too large number of possible
pairings; thus we were unable to consider the ‘‘airline crew
rostering”;

� for the instance 2, if only the reduced set of ‘‘optimal pairings”
resulting of the first subproblem, is used, the second subproblem
appears impossible;

� for the instance 1, the solution obtained with the integrated
approach (see Table 1) is better than the one obtained with
the non-integrated approach, corresponding to a cost of zero,
but an average deviation of 49:28.

Clearly, such comparison between integrated and non-inte-
grated approaches merits more attention and larger experimenta-
tions in the future.
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