An $O(\ln n / \ln \ln n)$-approximation Algorithm for the Asymmetric Traveling Salesman Problem and its Prerequisites

Germano Hüning Neuenfeld
Supervisor: Marcel K. de Carli Silva

Asymmetric Traveling Salesman Problem (ATSP)

- As a Practical Problem
- Formal Definition

OUTPUT

Given a complete digraph $D=(V, A)$ and a cost $c \geq 0$ on the arcs, find a minimum cost cycle that traverses each vertex of D exactly once.

How to attack it?

- TSP and ATSP are NP-hard $\sqrt{\text { Algs }} \underset{\text { maco } 388}{ }$
- Moreover, they cannot be approximated unless $P=N P$
- However, their metric versions can (mTSP and mATSP)
- For each $\mathrm{u}, \mathrm{v}, \mathrm{w}$ in V , we impose $c_{u w} \leq c_{u v}+c_{v w}$
- Thus, I will show the approximation algorithm developed by
(Asadpour et al., 2010) for the mATSP

Approximation Algorithms

- Optimization Problem of Minimization with OPT
- An algorithm is an $\boldsymbol{\alpha}$-approximation algorithm if it returns a candidate whose cost is at most α OPT where $\alpha \geq 1$
- Paradigm: Lose optimality, Gain efficiency with guaranteed quality

Christofides Algorithm and Asadpour et al. Algorithm

Input: Graph G, metric cost $c \geq 0$ (mTSP)

1. Find a MST T in \mathbf{G}
2. Transform \mathbf{T} into an Eulerian graph \mathbf{G}^{\prime} with a min-cost perfect matching involving vertices of \mathbf{T} of odd degree
3. Find a closed walk \mathbf{W} that traverses each edge of \mathbf{G} ' once
4. Shortcut W

Input: Digraph D, metric cost $c \geq 0$ (mATSP)

1. Find opt-sol \mathbf{x}^{*} to Held-Karp relaxation of mATSP
2. Find \mathbf{T}^{*} that is $(\alpha, 2)$-thin tree "wrt" \mathbf{x}^{*} with high probability
3. Transform \mathbf{T}^{*} into an Eulerian digraph D' with a min-cost integer circulation of cost at most $(2 \alpha+2)$ OPT $_{\text {HK }}$
4. Find a closed eulerian trail W in \mathbf{D}^{\prime}
5. Shortcut W

Find opt-sol x* to Held-Karp relaxation of mATSP

- Formulate mATSP as an optimization problem involving 0-1 variables and exponentially many constraints
- Allow fractional values in [0, 1] and obtain a linear optimization program called Held-Karp relaxation of mATSP
- Equivalence optimization and separation problems helps to solve HK relaxation in polynomial-time
- Ellipsoid Method $\xlongequal[\substack{\text { LinAlg } \\ \text { Matoliz2 }}]{ }$
- Reduction to Max-flow Min-Cut and Flow Algorithms

Find T^{*} that is a ($\alpha, 2$)-thin tree "wrt" X * with high probability

- We want a 0-1 vector that represents a spanning tree with a certain structure (thin-tree)
- However, we have a fractional vector \mathbf{x}^{*}
- Rounding
- Randomized Swap Rounding (RSR) by (Chekuri et al., 2009)
- Spanning tree sampled from RSR is α-thin with high probability.
- Chernoff Bounds (Concentration Bound) $\xlongequal[\substack{\text { Prob } \\ \text { MAEO } \\ \hline}]{ }$
- Result on counting β-minimum cuts due to (Karger, 1993)

Conclusion

- Important breakthrough for an important problem
- Wide and interesting connection of areas
- Linear Algebra, Graph Theory, Probability Theory, Linear Programming, Combinatorial Optimization, Approximation Algorithms, Analysis of Algorithms

Bibliography

Asadpour, A., M. Goemans, A. Madry, S. O. Gharan, and A. Saberi. 2010. "An
O(logn/loglogn)-approximation Algorithm for the Asymmetric Traveling Salesman Problem." In Proceedings of the Twenty-First ACM-SIAM Symposium on Discrete Algorithms.

Chekuri, C., J. Vondrák, and R. Zenklusen. 2009. "Dependent Randomized Rounding for Matroid
Polytopes and Applications." http://arxiv.org/abs/0909.4348.

Karger, D. R. 1993. "Global min-cuts in RNC, and other ramifications of a simple min-cut algorithm." In Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, 21-30.

Thank you!

