
A Randomized O(lnn/ ln lnn)-Approximation Algorithm for the
Metric Asymmetric Traveling Salesman Problem

Germano Hüning Neuenfeld
Supervisor: Marcel K. de Carli Silva

March 10, 2021

Abstract

The Traveling Salesman Problem (TSP) is central in theoretical computer science and has a myriad of
applications. A generalization of the TSP, the Asymmetric Traveling Salesman Problem (ATSP), has a metric
version, denoted by mATSP, which admits an approximation algorithm with a polynomial-time computable
approximation ratio. This monograph presents a randomized approximation algorithm for the mATSP due
to Asadpour, Goemans, Madry, Oveis Gharan, and Saberi [2], which represented a breakthrough for this
problem. Moreover, to understand the Asadpour et al. algorithm, this work presents a collection of tools
from areas such as combinatorial optimization, linear programming, and probability theory whose use is
standard in the study of approximation algorithms.

Keywords: asymmetric traveling salesman problem, thin trees, concentration bounds, random spanning
trees, randomized rounding, negatively correlated random variables.

Resumo

O Problema do Caixeiro Viajante (TSP) é central em teoria da computação e tem uma infinidade de aplicações.
Uma generalização do TSP, o Problema do Caixeiro Viajante Assimétrico (ATSP), tem uma versão métrica,
denotada por mATSP, que admite um algoritmo de aproximação com uma razão de aproximação que é
computável em tempo polynomial. Esta monografia apresenta um algoritmo de aproximação aleatorizado
para o mATSP devido a Asadpour, Goemans, Madry, Oveis Gharan e Saberi [2] que representou um grande
avanço para esse problema. Além disso, para compreender o algoritmo devido a Asadpour et al., este trabalho
apresenta uma coleção de ferramentas de áreas como otimização combinatória, programação linear, e teoria
da probabilidade cujo uso é padrão no estudo de algoritmos de aproximação.

Palavras-chave: problema do caixeiro viajante assimétrico, árvores finas, limitantes de concentração, árvores
geradoras aleatórias, arredondamento aleatorizado, variáveis aleatórias negativamente correlacionadas.

Acknowledgements

First, thanks to my family: my father Lairton Neuenfeld, my mother Ilisete Luiza Hüning, and my sister
Julia Hüning Neuenfeld. They offer me the patience, support, and understanding I needed to keep going.
Also, I want to thank my friends for the support and advice, in particular to the long hours of talking with
Victor Aliende da Matta and Thiago Estrela Montenegro.

I am immensely grateful for having Professor Marcel Kenji de Carli Silva as my supervisor. His mentoring
helped me to develop this work to way more than I initially could. At the same time, his mentoring showed
me that much more can be done. I am also thankful to Professor Nina Hirata for her kindness and patience
during the development of the monograph.

Finally, I want to dedicate this work to Daisi Oreques da Silva (in memoriam), the “tia Dai”, who left us
last year. Your smile will always be in my mind.

Contents

1 Introduction 1

2 Preliminaries 3
2.1 Notation . 3
2.2 General Math . 3
2.3 Graph Theory . 5
2.4 Polyhedra and Linear Programming . 8
2.5 Linear Algebra . 8

3 The ATSP and the Asadpour et al. Algorithm 10

4 Max-Flow Min-Cut and Circulations 18
4.1 The Max-Flow Min-Cut Theorem . 18
4.2 The Edmonds-Karp Algorithm . 24
4.3 Hoffman’s Circulation Theorem . 28

5 Randomized Algorithms and
Sampling Spanning Trees 29
5.1 Discrete Probability . 29
5.2 Concentration Bounds . 34
5.3 Randomized Swap Rounding . 38
5.4 Sampling Random Spanning Tree of Gz∗ . 45
5.5 Karger’s Bound on the Number of α-Minimum Cuts . 46
5.6 Finding an (α, 2)-Thin Tree of Gz∗ With High Probability . 50

6 The Ellipsoid Method 55
6.1 The Geometry of Ellipsoids . 55
6.2 The Central-Cut Ellipsoid Method . 60
6.3 Equivalence of Separation and Optimization . 62

References 63

i

Chapter 1

Introduction

The Traveling Salesman Problem (TSP) is central in theoretical computer science and has a myriad of
applications (see Cook [7, Chapter 3]) that range from those that provide the name of the problem, namely
designing minimum-cost road trips, to even surprising ones such as mapping genomes. The usual presentation
of the problem is with a road trip through cities. Given a set of cities and the distance between each pair,
we want to know how one can visit all cities exactly once and come back to where the journey began while
traveling the smallest distance possible. This is a formulation of the Traveling Salesman Problem (TSP). The
Asymmetric Traveling Salesman Problem (ATSP) is a generalization of the TSP where the distances between
the cities can be different according to the direction of movement (hence the “asymmetric”).

The TSP and the ATSP are NP-hard; so both problems cannot be solved in polynomial time unless P = NP.
Moreover, neither admits an approximation algorithm with a polynomial-time computable approximation
ratio unless P = NP (see Vazirani [20, Theorem 3.6]). However, one can impose some assumptions that allow
these problems to be approximated while still being interesting from both an application and a theoretical
perspective. The Metric (Asymmetric) Traveling Salesman Problem, denoted by mTSP (mATSP), is the
TSP (ATSP) when one imposes that the distances between the cities satisfy the triangular inequality. In this
monograph, we present a randomized approximation algorithm for the mATSP due to Asadpour, Goemans,
Madry, Oveis Gharan, and Saberi [2].

The Asadpour et al. algorithm is a mark in the history of the mATSP. First, when it was published in 2010
as a o(log n)-approximation algorithm for the mATSP, it represented the break of a barrier of over 25 years
since the Θ(log n)-approximation algorithm due to Frieze, Galbiati, and Maffioli [9]. Second, it represents an
application of a collection of areas and their tools that is standard in the study of approximation algorithms.
Starting from the classic area of combinatorial optimization with problems involving minimum cuts and
minimum-cost circulations, it goes through linear programming with the Held-Karp relaxation of ATSP,
the ellipsoid method, and the equivalence of separation and optimization problems, and arrives at a set of
probability tools such as Chernoff bounds and the sampling of spanning trees using a maximum entropy
distribution. Also, the algorithm uses the recent definition of thin trees, which has been shown to be very
fruitful; for instance, Anari and Gharan [1] give a bound on the integrality gap of the Held-Karp relaxation
of ATSP using this definition.

Both the importance of the mATSP and the tools used to design this algorithm would already make the
study of this algorithm worthwhile. However, this algorithm also has a beautiful and remarking resemblance
with the algorithm due to Christofides [6] which is a 3/2-approximation algorithm for the mTSP. First, each
one finds a specific spanning tree. While this is a fairly easy task in Christofides’s algorithm, in the Asadpour
et al. algorithm, it is the most difficult and central part of the algorithm. Then Christofides’s algorithm
builds an Eulerian graph using an optimum solution of the minimum-cost perfect matching problem, while
the Asadpour et al. algorithm builds an Eulerian digraph using an optimum solution of the minimum-cost
integer circulation problem. Finally, both algorithms use a idea of shortcutting the Eulerian graph/digraph
into the final result, a Hamiltonian circuit of minimum cost.

In this monograph, we dive into this interesting connection of subjects and study the algorithm of Asadpour
et al. In Chapter 2, we present a few notations, definitions, and results used throughout the text, such as
those involving linear programming and graph theory. In Chapter 3, we present the ATSP (and its metric

1

version mATSP) and the Asadpour et al. algorithm; this algorithm has three steps that we prove we can
perform in polynomial time in the subsequent chapters. In Chapter 4, we prove the Max-Flow Min-Cut
theorem, and we present the Edmonds-Karp Algorithm to find a minimum cut in polynomial time; also,
we present Hoffman’s circulation theorem. In Chapter 5, we present the probability tools needed for the
randomized part of the algorithm, and we show how we can perform the second step of the Asadpour et al.
algorithm in polynomial time. In particular, we present randomized swap rounding (RSR), an algorithm we
use for sampling random spanning trees. This sampling is done in [2] using a maximum entropy distribution;
however, RSR provides a simpler approach for such sampling with stronger guarantees. Finally, in Chapter 6,
we show the method of ellipsoids, and we present the theorem of equivalence of separation and optimization
problems; this last result is used to show the first step of the algorithm can be done in polynomial time.

Finally, we should also remark on the still high activity in the area. In 2018, Svensson, Tarnawski, and
Végh [18] provided a constant-factor approximation algorithm for the mATSP and gave a constant upper
bound on the integrality gap of the Held-Karp relaxation of ATSP. Also, in an even more recent development
in 2019, Traub and Vygen [19] improved these constants.

2

Chapter 2

Preliminaries

This chapter presents some basic notation, definitions and results that will pervade the text. Throughout the
text, the formal definitions will be given by bold words, while when we have an informal definition, or when
we just want to give emphasis to the concept we will use italic words.

2.1 Notation
The sets N, Z, Q, and R are the sets of natural, integer, rational, and real numbers, respectively. Define
[n] := {1, . . . , n} for each n ∈ N. If I ∈ {N,Z,Q,R}, define

I+ := {α ∈ I : α ≥ 0} and I++ := {α ∈ I : α > 0} . (2.1)

We will use Minkowski notation to sum sets, that is, if U and V are sets, then U+V := {u+ v : u ∈ U, v ∈ V }.
We abbreviate v + U := {v}+ U for a singleton {v} and a set U .

The Iverson bracket of a predicate P is defined by

[P] :=

{
1 , if P is true ,
0 , otherwise .

(2.2)

2.2 General Math
We start with some set theory, relations, and functions. We presuppose the reader has some familiarity with
these concepts. Even so, we present some notation and definitions that we judge are worth stating to avoid
confusions or misinterpretations.

Let A be a finite set, and let k be a nonnegative integer with k ≤ |A|. Then a k-set of A is a subset of A
with k elements. Moreover, we denote by

(
A
k

)
the set of all k-sets of A.

Let A,B be sets. We denote by BA the set of all functions from A to B, and if A = [n] for some n ∈ N,
we abbreviate B[n] by Bn. Let a ∈ A, and let b ∈ B. We abbreviate ab := (a, b), and we define ab−1 := ba.
These two definitions regarding ordered pairs are useful in many contexts; for instance, to write the entries of
a matrix, to write an arc of a digraph, and to define the reverse digraph of a digraph.

Let f : A→ B be a function, and let a ∈ A. The image or value of a under f is f(a). Let X and Y be
subsets of A and B, respectively. The image of X under f is the set

f [X] := { b ∈ B : there is x ∈ X such that f(x) = b} . (2.3)

The preimage or inverse image of Y under f is the set

f−1[Y] := { a ∈ A : f(a) ∈ Y } ; (2.4)

we abbreviate f−1[y] := f−1[{y}] for each y ∈ B. Usually, one introduces the definitions of image of a subset
of the domain, and of preimage of a subset of the codomain, under a function using parentheses instead of

3

square brackets. However, this may lead to confusion since the domain and/or codomain of the function can
have a set as an element. For instance, if A = {1, 2, {1, 2}}, then f({1, 2}) refers to the value of {1, 2} under
f , while f [{1, 2}] refers to the image of set {1, 2} under f .

Let f : A→ B be a function. Then f is invertible if and only if f is injective and surjective. One can show
that if f is an invertible function, then it has a unique inverse that we denote by f−1. Since f−1 is a function,
the above definitions of value, image, and preimage also apply to f−1. Note that if f is invertible, then
f−1[Y], for a subset Y of B, can mean the preimage of Y under f or the image of Y under f−1. However, in
this case, both interpretations provide the same set; so there is no ambiguity in defining both concepts with
the same notation. Even so, one must keep in mind that the expression f−1[Y], for a subset Y of B, does not
mean that the function f has an inverse function f−1.

Proposition 2.1. Let f : A→ B be an injective function. Then

(i) f [X ∩ Y] = f [X] ∩ f [Y] for each X,Y ⊆ A, and

(ii) f−1[f [X]] = X for each X ⊆ A.

Let f : A→ R be a function. The support of f is the set supp(f) := { a ∈ A : f(a) 6= 0}. Let g : B → C be
a function, and let S be a subset of B. The restriction of g to S is the function g�S : s ∈ S 7→ g(s).

A relation ≤ on a set A is a partial order on A if, for each a, b, c ∈ A,

(i) (Reflexivity) a ≤ a ,

(ii) (Antisymmetry) if a ≤ b and b ≤ a , then a = b, and

(iii) (Transitivity) if a ≤ b and b ≤ c , then a ≤ c.

A partially ordered set, or poset, is an ordered pair (P,≤), where P is a set and ≤ is a partial
order on P . Let (P,≤) be a poset, and let S be a subset of P . An element a of S is maximal in S if
{ b ∈ S : a ≤ b} = {a}, i.e., there is no b ∈ S such that a ≤ b and a 6= b (in words: if we translate c ≤ d
to d greater than or equal to c for each c, d ∈ S, then a is maximal in S if there is no element b in S, distinct
of a, that is greater than or equal to a). An element a of S is maximum in S if b ≤ a for each b ∈ S. Note
that if S has a maximum, it is unique. Also, note that the maximum element in S, if it exists, is a maximal
element, but the converse is not necessarily true.

A relation < on a set A is a strict total order on A if, for each a, b, c ∈ A,

(i) (Asymmetry) if a < b, then b ≮ a ,

(ii) (Transitivity) if a < b and b < c, then a < c , and

(iii) (Semiconnexity) a < b or b < a or a = b .

Also, one can show that a binary relation R on a set A is asymmetric and semiconnex if and only if it is
trichotomous, that is, for each a, b ∈ A, exactly one of aRb, bRa, and a = b holds. Thus, a strict total order
can be equivalently defined as a relation that satisfies transitivity and trichotomy.

Now we turn into some definitions involving sequences and series. They concern the proof of Proposition 2.3,
an important inequality involving the exponential function that appears in some proofs.

A sequence (of real numbers) is a function from N to R. We have a special notation for a function of
this form. If a is a sequence, for each n ∈ N, we denote a(n) by an, and we say an is the n-th term of the
sequence; also, the values of a, i.e, a1, a2, a3, . . ., are the terms of the sequence a. We write (an)n∈N, or
simply (an), to indicate a sequence a. Sometimes, we may include zero and consider (an)n∈N∪{0} a sequence.

A sequence (an) converges to a real number a if

for each ε > 0, there exists n0 ∈ N such that for each n ∈ N, if n > n0, then |an − a| < ε. (2.5)

If a sequence (an) converges to a real number a, we say (an) is convergent; in this case, we say a is limit
of (an), and we write lim an = a. Actually, one can show that if a sequence is convergent, then its limit is
unique, and so we can say the limit of a sequence if the sequence is convergent.

4

Now we present an important family of sets for the definition of the limit of a sequence, the open intervals.
Let a ∈ R, and let ε > 0. The open interval (a− ε, a+ ε) is the set {x ∈ R : a− ε < x < a+ ε}. Then a real
x ∈ R is in (a− ε, a+ ε) if and only if |x− a| < ε. Moreover, (a− ε, a+ ε) is called the ε-neighborhood of
a. Thus, we can provide a characterization of the limit of a sequence in terms of neighborhoods of the limit in
the real line.

A sequence (an) converges to a real number a if and only if

for each ε > 0, there exists n0 ∈ N such that for each n ∈ N, if n > n0, then an ∈ (a− ε, a+ ε). (2.6)

Let (an) be a sequence. Define the corresponding sequence (sn) as

sn =

n∑
i=1

ai for each n ∈ N .

Denote the sequence (sn) by
∞∑
n=1

an = a1 + a2 + a3 + · · · . (2.7)

We say the expression
∑∞
n=1 an is a (infinite) series. The terms sn are the partial sums of the series∑∞

n=1 an. Moreover, we say the series
∑∞
n=1 an converges to s if the sequence (sn) converges to s; in this

case, we write
∑∞
i=1 an = s, and we say s is the sum of the series.

Note that when we write
∑∞
n=1 an = s, we mean that s is the limit of a sequence of sums (in case,

(sn)), and not that s is the “addition” of infinite terms of sn. It may be convenient to consider sequences
(an)n∈N∪{0}, and then we may consider

∑∞
n=0 an a series. We write

∑
an to denote

∑∞
n=1 an or

∑∞
n=0 an,

when possible.
A series of the form

∑∞
n=0 anx

n, for a sequence (an) and a scalar x ∈ R, is a power series.

Lemma 2.2. Let (an) be a convergent sequence such that an ≥ 0 for each n ∈ N. Then lim an ≥ 0.

Proof. The proof is by contradiction. Suppose lim an = a < 0, and set ε := |a| > 0. Then, by the
characterization of the limit of a sequence (see (2.6)), there exists n0 ∈ N such that for each n ∈ N, if n > n0,
then an ∈ (a− ε, a+ ε). Therefore, we have a contradiction with an0+1 < a+ ε < 0, for instance.

Proposition 2.3. For each x ∈ R,
ex ≥ 1 + x .

Proof. We divide the proof into three cases. For the first case, suppose x ≤ −1. Then ex > 0 while 1 + x ≤ 0.
Now by definition of the exponential function ex as a power series, we have, for each x ∈ R,

ex =

∞∑
i=0

xi

i!
= 1 + x+

∞∑
i=2

xi

i!
(2.8)

Suppose x ≥ 0. Then each term of the sum
∑∞
i=2

xi

i! is nonnegative, and so ex ≥ 1 + x by the RHS of
(2.8).

Finally, suppose −1 < x < 0. Set (sn) to be the sequence such that sn =
∑n+1
i=2

xi

i! for each n ∈ N. We
claim sn ≥ 0 for each n ∈ N. Indeed, (sn) is an alternating sequence, that is, the sign of the sequence terms
changes between consecutive terms; the first term of sn is positive; moreover, as n increases, sn decreases in
modulus. Thus, by Lemma 2.2, lim sn ≥ 0, i.e.,

∑∞
i=2

xi

i! ≥ 0. Therefore, by the RHS of (2.8), ex ≥ 1 + x.

2.3 Graph Theory

A graph is an ordered triple (V,E, ψ), where V and E are sets, and ψ is a function from E to
(
V
2

)
∪
(
V
1

)
. If

G = (V,E, ψ) is a graph, the elements of V and E are the vertices and the edges of G, respectively, and ψ
is called the incidence function of G. If G is a graph, we denote by V (G) the set of vertices of G, by E(G)

5

the set of edges of G, and by ψG the incidence function of G. Thus, we may refer to the vertex set, the edge
set, and the incidence function of a graph even though we have not given a specific symbol for each of them.

Let G = (V,E, ψ) be a graph. An edge e ∈ E is a loop if |ψ(e)| = 1. Two distinct edges e, f ∈ E that are
not loops and for which ψ(e) = ψ(f) are called parallel edges. The graph G is simple if G has no loops
nor parallel edges. Equivalently, G is simple if ψ is a function from E to

(
V
2

)
and ψ is injective. When ψ is

the identity function e ∈ E 7→ e (and so E ⊆
(
V
2

)
∪
(
V
1

)
), instead of writing G = (V,E, ψ), we may say that

G is the pair (V,E); in other words, if we say that H = (U,F) is a graph, it is implicit that F ⊆
(
U
2

)
∪
(
U
1

)
and that ψH is the identity function.

Let G = (V,E, ψ) be a graph. We abbreviate uv := {u, v} for any u, v ∈ V . If u, v ∈ V and e ∈ E with
ψ(e) = uv, we say e joins u and v, u and v are called the ends of e, and e is incident to u and v. Two
vertices u, v ∈ V are called adjacent, and u is a neighbor of v (and v is a neighbor of u) if ψ(e) = uv for
some e ∈ E. The neighborhood of a vertex v ∈ V , denoted by NG(v), is the set of neighbors of v. If U ⊆ V ,
we say

Eψ[U] := { e ∈ E : ψ(e) ⊆ U}

is the edge set of G induced by U , i.e., Eψ[U] is the set of edges of G with both ends in U . When the
incidence function ψ is clear from context, we may use E[U] := Eψ[U]. Also, we abbreviate Eψ[v] := Eψ[{v}]
for each v ∈ V . If U ⊆ V , we define

δG(U) := { e ∈ E : ψ(e) = uv for some u ∈ U and v /∈ U} ,

i.e., δG(U) is the set of edges of G with exactly one end in U . When the graph G is clear from context, we
may use δ(U) := δG(U) for any U ⊆ V . Moreover, we abbreviate δG(v) := δG({v}) for each v ∈ V .

A graph G is complete if G is simple and any two distinct vertices are adjacent.
Let G = (V,E, ψ) be a graph. A walk in G is a sequence (v0, e1, v1, . . . , ek, vk) for some k ≥ 0,

where v0, v1, . . . , vk are vertices of G and, for each i ∈ [k], ei is an edge of G with ends vi−1 and vi. Let
W = (v0, e1, v1, . . . , ek, vk) be a walk in G for some k ≥ 0. The walk W is said to connect v0 and vk, and to
traverse vertices v0, . . . , vk and edges e1, . . . , ek; also, we sayW is a walk from v0 to vk (or between v0 and
vk). Moreover, we say W is a v0-vk walk, and for S, T ⊆ V , the walk W is called an S-T walk if v0 ∈ S and
vk ∈ T , i.e., if W is a walk from a vertex of S to a vertex of T . The vertex v0 is the starting vertex or the
first vertex of W while the vertex vk is the end vertex or the last vertex of W . Vertices v0 and vk are the
end vertices of W . The length of W is the integer k, i.e., the number of edges of W . A walk is odd (even,
resp.) if its length is odd (even, resp.). If P = (v0, e1, v1, . . . , ek, vk) and Q = (u0, f1, u1, . . . , f`, u`) are walks
such that u0 = vk, the concatenation of P and Q is the walk P ·Q := (v0, e1, v1, . . . , ek, vk, f1, u1, . . . , f`, u`).
If W = (v0, e1, v1, . . . , ek, vk) is a walk in G and i < j are integers in {0, 1, . . . , k}, then the subsequence
(vi, ei, vi+1, . . . , ej , vj) of W , denoted by viWvj , is called the segment of W from vi to vj . We write V (W)
and E(W) for the set of vertices traversed by W and the set of edges traversed by W , respectively. Thus, we
may consider W as the subgraph (V (W), E(W), ψ�E(W)) of G. If G is simple, then W is determined by the
sequence of vertices (v0, . . . , vk), and we may identify W with such sequence.

A trail in a graph G is a walk in G with no repeated edges. A path in a graph G is a walk in G with no
repeated vertices. A walk in a graph G is closed if it has positive length and equal end vertices. A cycle in
a graph G is a closed trail in G. A circuit in a graph G is a cycle (v0, e1, v1, . . . , ek, vk) in G for some k ≥ 1,
where v1, . . . , vk are all distinct. A trail P in a graph G is called Eulerian if each edge of G is traversed
exactly once by P . A graph G is called Eulerian if it has an Eulerian cycle.

Let G = (V,E, ψ) be a graph. A graph H is a subgraph of G if V (H) ⊆ V (G), E(H) ⊆ E(G), and
ψH = ψG�E(H). If H is a subgraph of G, we say H is contained in G or G contains H, and we write
H ⊆ G or G ⊇ H, respectively. In addition, if H ⊆ G, we also say G is a supergraph of H. Note that G is
a subgraph and a supergraph of itself. Thus, if H ⊆ G and H 6= G, we say H is a proper subgraph of G
and G is a proper supergraph of H. If H ⊆ G and V (H) = V (G), then H is a spanning subgraph of G.
The subgraph of G induced by a nonempty subset U of V is the graph G[U] := (U,E[U], ψ�E[U]).

Let G = (V,E, ψ) be a graph. Let U and F be subsets of V and E, respectively. Moreover, let H,H ′ be

6

subgraphs of G. Then

G− U := G[V \ U] ,

G− F := (V,E \ F,ψ�E\F) ,

H + U := (V (H) ∪ U,E(H), ψ�E(H)) , (2.9)

H + F := (V (H), E(H) ∪ F,ψ�E(H)∪F) ,

H +H ′ := (V (H) ∪ V (H ′), E(H) ∪ E(H ′), ψ�E(H)∪E(H′)) .

To simplify, if x is a vertex or an edge of G, we write G − x and H + x instead of G − {x} and H + {x},
respectively.

A graph G is connected if for each u, v ∈ V (G) there exists a walk in G connecting u and v. Let G be
graph. A subgraph C of G is a (connected) component of G if C is connected and any subgraph H of G
which is a proper supergraph of C is not connected (disconnected). Equivalently, a subgraph C of G is a
component of G if C is a maximal connected subgraph of G, that is, for the poset (S,⊆), where S is the set
of subgraphs of G, the subgraph C is a maximal element of the subset of connected graphs of S. If C is a
component of G, we may identify the graph C with the vertex set V (C); thus, we may write, for instance,
C ⊆ V (G).

Let G be a graph. The graph G is acyclic if it has no circuits (or, equivalently, if it has no cycles); an
acyclic graph is also called a forest. A tree is a connected forest. A spanning tree of G is a spanning
subgraph of G that is a tree.

A digraph is an ordered triple (V,A, ψ) defined similarly to a graph, except that elements of A are called
arcs and the incidence function is ψ : A→ V × V . Let D = (V,A, ψ) be a digraph. An arc a ∈ A is a loop
if ψ(a) = (v, v) for some v ∈ V . Two distinct arcs a, b ∈ A that are not loops and for which ψ(a) = ψ(b) are
called parallel arcs. The digraph D is simple if D has no loops nor parallel arcs. Similar to when we write
a graph as a pair, when ψ is the identity function a ∈ A 7→ a (and so A ⊆ V × V), we may omit the incidence
function and say that D is the pair (V,A).

From Section 2.2, recall that we may write an arbitrary ordered pair (i, j) as ij; when dealing with graphs
and digraphs, we use such convention in a way that, from the context, one can correctly identify whether ij
means an arc (i, j) or an edge {i, j}.

Let D = (V,A, ψ) be a digraph. If ψ(a) = uv for some arc a ∈ A, then u and v are the ends of a, and u is
called the tail of a while v is called the head of a; in addition, we say a is incident to u and v, the vertices
u and v are called adjacent, and we say a leaves u and enters v. Similarly, for U ⊆ V , if ψ(a) = uv for an
arc a ∈ A and vertices u ∈ U, v /∈ U , then we say a leaves U and enters U := V \ U . If U ⊆ V , we say

Aψ[U] := { a ∈ A : ψ(a) ∈ U × U}

is the arc set of D induced by U , i.e., Aψ[U] is the set of arcs of A with both ends in U . When the incidence
function ψ is clear from context, we may use A[U] := Aψ[U]. Also, we abbreviate Aψ[v] := Aψ[{v}] for each
v ∈ V . If U ⊆ V , we define

δ in

D (U) := { a ∈ A : ψ(a) = uv for some u ∈ U and v ∈ U} , and
δ out

D (U) := { a ∈ A : ψ(a) = uv for some u ∈ U and v ∈ U} ,

i.e., δ in

D (U) is the set of arcs of A that enter U while δ out

D (U) is the set of arcs of A that leave U . Similarly to
graphs, when the digraph D is clear from context, we may use δ in(U) := δ in

D (U) and δ out(U) := δ out

D (U) for
any U ⊆ V . Moreover, we abbreviate δ in

D (v) := δ in

D ({v}) and δ out

D (v) := δ out

D ({v}) for each v ∈ V .
A digraph D = (V,A, ψ) is complete if D is simple and ψ(A) is all ordered pairs (u, v) with u, v ∈ V

and u 6= v.
We can also define walk, trail, path, cycle, and circuit for a digraph by just replacing edges by arcs in the

respective definitions for a graph. For instance, a walk in a digraph D is a sequence (v0, a1, v1, . . . , ak, vk)
for some k ≥ 0, where v0, v1, . . . , vk are vertices of D and, for each i ∈ [k], ai is an arc of D with ends vi−1

and vi. Also, a circuit in a digraph D is a cycle (v0, a1, v1, . . . , ak, vk) in D for some k ≥ 1, where v1, . . . , vk
are all distinct. A trail P in a digraph D is Eulerian if each arc of D is traversed exactly once by P . A

7

digraph D is called Eulerian if it has an Eulerian cycle. A Hamiltonian circuit C in a digraph D is a
circuit in D with V (C) = V (D). A digraph D is called Hamiltonian if it has a Hamiltonian circuit.

Let D = (V,A, ψ) be a digraph, and let π : V × V →
(
V
1

)
∪
(
V
2

)
be a function defined by π(i, j) := {i, j}

for each i, j ∈ V . The underlying graph of D is the graph G = (V,A, πψ), i.e., the graph obtained when
one “ignores” the orientation of the arcs; on the other hand, D is called an orientation of G.

A digraph D = (V,A, ψ) is strongly connected if for each u, v ∈ V there exists a walk between u and v
in D. A digraph is (weakly) connected when its underlying graph is connected.

The reverse digraph of D is the digraph D−1 := (V,A, ψ−1) where ψ−1(a) := ψ(a)−1 for each a ∈ A.

2.4 Polyhedra and Linear Programming
Let V be a finite set. An (affine) hyperplane in RV is a set of the form {x ∈ RV : aTx = β} for some
vector a ∈ RV \ {0} and scalar β ∈ R; in addition, we can call this set a linear hyperplane if β = 0. A
(affine) halfspace RV is a set of the form {x ∈ RV : aTx ≤ β} for some vector a ∈ RV \ {0} and β ∈ R;
and similarly to hyperplanes, we can call this set a linear halfspace if β = 0. Usually, the term affine is
used when the hyperplane or halfspace is not linear, but, as we define, affine not necessarily mean that. A
polyhedron in RV is a set of the form {x ∈ RV : Ax ≤ b} for some matrix A ∈ RU×V and vector b ∈ RU ,
where U is some finite set. Let U be a finite set. If A ∈ RU×V is a matrix and b ∈ RU a vector we say Ax ≤ b
is a system of (linear) inequalities and Ax = b is a system of (linear) equalities.

Note that every hyperplane and halfspace is a polyhedron. On the other hand, any polyhedron is the
intersection of a finite number of halfspaces. Moreover, a polyhedron is the solution set of a system of
inequalities. Thus, if P = {x ∈ RV : Ax ≤ b} is a polyhedron in RV , we say the system of inequalities Ax ≤ b
determines the polyhedron P ; also, for a vector d ∈ RV and a scalar α ∈ R, an inequality dTx ≤ α is valid
for P if dTx ≤ α for each x ∈ P .

Let U, V be finite sets. Let A ∈ RU×V , let b ∈ RU , and let c ∈ RV . A problem of the form

Max cTx or Min cTx (2.10a)
s.t. Ax ≤ b s.t. Ax ≤ b (2.10b)

is called a linear program, or for short, LP. In other words, an LP is a problem of maximization or
minimization of a linear function on a vector such as c where the domain points lie in a polyhedron such
as P := {x ∈ RV : Ax ≤ b}. We look at (2.10) formulation for the following general definitions of LPs.
The vector c is called the cost vector. The linear function x → cTx is called the objective function
or the cost function, and for a x ∈ P , the real number cTx is called the objective value or cost of
x. A point in the polyhedron P is called a feasible solution. The polyhedron P is called the feasible
region. If the feasible region is nonempty, the LP is called feasible; otherwise, infeasible. If there is
a point x∗ in P such that cTx∗ ≤ cTx for each x ∈ P (minimization LP) or cTx∗ ≥ cTx for each x ∈ P
(maximization LP), then we say the respective LP is bounded, the point x∗ is an optimum solution,
and cTx∗ is the optimum value; otherwise, the LP is called unbounded. Notice that a maximization
LP can easily be turned into a minimization one or vice-versa by only inverting the sign of the cost vector,
i.e., max{cTx : Ax ≤ b} = min{−cTx : Ax ≤ b}. So from now on we state the definitions and results on a
maximization LP.

Theorem 2.4. Let V be a finite set. Let P ⊆ RV be a polyhedron and c ∈ RV . Suppose P is nonempty.
Then the LP

Max cTx
s.t. x ∈ P

is either unbounded or it has an optimum solution.

2.5 Linear Algebra
We state the following results without proof. They will be used when we study ellipsoids and the ellipsoid
method in Chapter 6.

8

Proposition 2.5 (Sherman-Morrison formula). Let A ∈ Rn×n be an invertible matrix and let u, v ∈ Rn be
vectors. Then A+ uvT is invertible if and only if 1 + vTA−1u 6= 0. Moreover, if 1 + vTA−1u 6= 0, the inverse
of A+ uvT is

(A+ uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u
. (2.11)

The following theorem group a collection of important results regarding positive matrices.

Theorem 2.6. Let A ∈ RV×V be a positive definite matrix. Then:

(i) There exists a unique positive definite matrix, denoted by A1/2, that is square root of A.

(Every positive definite matrix has a unique square root that is positive definite.)

(ii) The matrix A is invertible and its inverse A−1 is also positive definite.

(Every positive definite matrix is invertible, and its inverse is also positive definite.)

(iii) There exists an invertible matrix B ∈ RV×V such that A = BBT = BTB.

(Every positive definite matrix is a product of an invertible matrix and its transpose.)

The following result gives us a way of creating positive definite matrices from invertible matrices.

Proposition 2.7. Let A ∈ RV×V . If A is invertible then AAT and ATA are positive definite.

9

Chapter 3

The ATSP and the Asadpour et al.
Algorithm

Let D = (V,A) be a digraph. From Section 2.3, recall that a (directed) Hamiltonian circuit in D is a circuit
C in D with V (C) = V . A function c : A → R+ is called a (nonnegative) cost function on the arcs of D
so that ca = c(a) is called the cost of an arc a ∈ A, and 1

T
Bc is called the cost of a subset of arcs B ⊆ A;

moreover, the cost of a subdigraph D′ of D is the cost of A(D′) (same for a walk in D). The asymmetric
traveling salesman problem (ATSP) is:

Given a digraph D = (V,A) and a cost function c : A→ R+, (ATSP)
find a Hamiltonian circuit C in D of minimum cost.

If D is a complete digraph and c is a cost function on the arcs of D, we say c satisfies the triangle inequality
if for all vertices u, v, w ∈ V we have cuw ≤ cuv + cvw. The metric asymmetric traveling salesman
problem (mATSP) is:

Given a complete digraph D = (V,A) and a cost function c : A→ R+ that satisfies (mATSP)
the triangle inequality, find a Hamiltonian circuit C in D of minimum cost,

i.e., (mATSP) is the (ATSP) when given a digraph that is complete and a cost function that satisfies the
triangle inequality. Note that if (ATSP) and (mATSP) were defined for a cost function taking on reals,
the problems would be essentially equal to the ones we present. That is, by just increasing all costs by the
absolute value of the lowest cost of an arc, we would have the problems as we present them; they would
possibly have distinct optimal values from the former, but the optimum solutions — the Hamiltonian circuits
of minimum cost — would still be the same. Hence, we choose to follow a usual presentation where the costs
mean, for instance, distances between objects or places.

The Held-Karp relaxation of the (ATSP) is the problem: given a digraph D = (V,A) and a cost
function c : A→ R+, solve the linear program:

Minimize cTx , (3.1a)

subject to 1T
δ out(U)x ≥ 1 for each ∅ 6= U (V , (3.1b)

1
T
δ in(v)x = 1

T
δ out(v)x = 1 for each v ∈ V , (3.1c)

x ∈ RA+ . (3.1d)

Let D = (V,A) be a complete digraph, let c : A→ R+ be a cost function, and set n := |V |. Consider the
LP (3.1). Note that x := 1

n−11 ∈ R
A, for instance, is a feasible solution of (3.1) since D is complete; so in this

case (3.1) is feasible. Moreover, we can show that (3.1) is bounded. Let x be a feasible solution of (3.1). By
(3.1d), we have x ≥ 0. Also, for each a ∈ A there exists a unique vertex v ∈ V such that a ∈ δ in(v), and then,
by (3.1c) and as x ≥ 0, we have xa ≤ 1. In other words, 0 ≤ x ≤ 1. Thus, by turning (3.1) into the equivalent

10

maximization problem, where we just invert the sign of the cost vector, and by applying Theorem 2.4, we
have that the Held-Karp relaxation of (ATSP), when the given digraph is complete, has an optimal solution
and a finite optimum value that we denote by OPTHK.

Now consider the Held-Karp relaxation of the (mATSP) for a complete digraph D = (V,A) and a cost
function c : A→ R+ that satisfies the triangle inequality, and let x∗ be an optimum solution. Then define the
vector z∗, a symmetrized and scaled-down version of x∗, as

z∗{u,v} :=
n− 1

n
(x∗uv + x∗vu) , (3.2)

for each distinct u, v ∈ V . Finally, define the graph Gz∗ := (V,E) where E := supp(z∗), and define the cost
function c∗ : E → R+ on the edges of G as

c∗uv := min{cuv, cvu} , (3.3)

for each {u, v} ∈ E.
Let U be a finite nonempty set, and let {xi}i∈I be a finite family of points in RU . A linear combination∑
i∈I αixi is a convex combination (of {xi}i∈I) if αi ≥ 0 for each i ∈ I and

∑
i∈I αi = 1. Then define, for

each X ⊆ RU ,

convX :=

∑
i∈[n]

λixi : n ∈ N, {xi}i∈[n] ⊆ X, λ ∈ Rn+, and
∑
i∈[n]

λi = 1

 ,

called the convex hull of X, to be the set of all convex combinations of finite subsets of points of X.
The spanning tree polytope of a graph G = (V,E) is

Psptree(G) := conv{1F : (V, F) is a spanning tree of G} , (3.4)

i.e., the set of all convex combinations of (finite) sets of incidence vectors of spanning trees of G.

Definition 3.1 (α-thin tree). Let G = (V,E) be a graph. Let T be a spanning tree in G, let α ≥ 1, and let
z ∈ Psptree(G). Then T is α-thin with respect to z if

|E(T) ∩ δ(U)| ≤ α1T
δ(U)z for each U ⊆ V . (3.5)

Consider the context of Definition 3.1. Note that when U = ∅ or U = V , the condition (3.5) is satisfied
for any spanning tree T of G. Thus, to show a spanning tree of G is α-thin with respect to z, we may ignore
these cases.

Definition 3.2 ((α, s)-thin tree). Let D = (V,A) be a complete graph, and let c : A→ R+ be a cost function
that satisfies the triangle inequality. Let x∗ be an optimum solution of the Held-Karp relaxation of (mATSP)
determined by D and c, and define z∗ from x∗ as in (3.2). Moreover, set the graph Gz∗ := (V,E) where
E := supp(z∗), and define the cost function c∗ : E → R+ as in (3.3). Finally, set OPTHK := cTx∗. Then for
any α ≥ 1 and any s ∈ R+, a spanning tree T of Gz∗ is (α, s)-thin if T is α-thin with respect to z∗ and

1
T
E(T)c

∗ ≤ s ·OPTHK . (3.6)

The following identities will be instrumental in proofs involving x∗ and z∗.

Proposition 3.3. Let D, c, x∗, z∗, Gz∗ be as in Definition 3.2. Then:

(i) Let u, v ∈ V be distinct, and suppose {u, v} /∈ E. Then x∗uv = x∗vu = 0.

(ii) Let U be a subset of V . Then

1
T
δ(U)z

∗ =

(
1− 1

n

)(
1
T
δ out
D (U)x

∗ + 1
T
δ in
D (U)x

∗
)

= 2

(
1− 1

n

)
1
T
δ out
D (U)x

∗ = 2

(
1− 1

n

)
1
T
δ in
D (U)x

∗ .

(iii) Let U be a subset of V . Then 1
T
E[U]z

∗ = (1− 1/n)1T
A[U]x

∗.

11

Proof. (i) Since E = supp(z∗) and z∗ is defined for each two distinct vertices of V , we have z∗{u,v} = 0. Then
x∗uv + x∗vu = 0 by (3.2). Moreover, x∗ ≥ 0 by (3.1d). Thus, x∗uv = x∗vu = 0.

(ii) By definition of z∗ in (3.2) and as E = supp(z∗), we have

1
T
δ(U)z

∗ =

(
1− 1

n

) ∑
u∈U,v/∈U s.t.
x∗uv+x∗vu 6=0

(x∗uv + x∗vu) =

(
1− 1

n

) ∑
u∈U,v/∈U

(x∗uv + x∗vu)

=

(
1− 1

n

)(
1
T
δ out
D (U)x

∗ + 1
T
δ in
D (U)x

∗
)

(3.1c)
= 2

(
1− 1

n

)
1
T
δ out
D (U)x

∗ (3.1c)
= 2

(
1− 1

n

)
1
T
δ in
D (U)x

∗ .

(iii) By definition of z∗ in (3.2), we have

1
T
E[U]z

∗ =

(
1− 1

n

) ∑
{u,v}∈E[U]

(x∗uv + x∗vu) =

(
1− 1

n

) ∑
uv∈A[U]

x∗uv =

(
1− 1

n

)
1
T
A[U]x

∗ ,

where the second equality holds by item (i).

The following result shows the graph Gz∗ , defined as in Definition 3.2, is connected, and so it has a
spanning tree. This is a trivial but crucial observation since the second step of the algorithm ApproxATSP
by Asadpour, Goemans, Madry, Oveis Gharan, and Saberi [2], as we see next, finds a special spanning tree of
Gz∗ .

Proposition 3.4. Let D, c, x∗, z∗, Gz∗ be as in Definition 3.2. Then the graph Gz∗ is connected.

Proof. The proof is by contradiction. Suppose Gz∗ is disconnected. Then there exists a nonempty and proper
subset U of V such that δGz∗ (U) = ∅. In other words, for each u ∈ U and v ∈ V \ u we have {u, v} /∈ E
which, by item (i) of Proposition 3.3, implies x∗uv = x∗vu = 0. In particular, this gives 1T

δ out
D (U)x = 0. However,

point x∗ is a feasible solution of the Held-Karp relaxation of (mATSP) determined by D and c, and so x∗
satisfies (3.1b), a contradiction.

Now, we present the algorithm due to Asadpour, Goemans, Madry, Oveis Gharan, and Saberi [2] for the
metric ATSP.
Algorithm 3.1: ApproxATSP(V, c)
Input:

(i) A finite set of vertices V , where n := |V |, that define the complete digraph D := (V,A).
(ii) A cost function c : A→ R+ that satisfies the triangle inequality.

Output: A Hamiltonian circuit C in D whose cost is (2α+ 2) = O(lnn/ ln lnn), where
α := 4 lnn/ ln lnn, of the optimum value OPT of the (mATSP) determined by D and c.

1. Find an optimal solution x∗ for the Held-Karp relaxation of the (mATSP) determined by D and c,
define z∗ from x∗ as in (3.2), and define Gz∗ as in Definition 3.2

2. Find an (α, s)-thin tree T ∗ of Gz∗ , where α := 4 lnn/ ln lnn and s := 2, with high probability
3. From T ∗ find a Hamiltonian circuit C with cost upper bounded by (2α+ s)OPTHK ≤ (2α+ s)OPT
4. return C

Theorems 3.5, 5.30, and 3.7 show how we can perform the three steps of the algorithm in polynomial
time. After that, Theorem 3.8, the main result of the monograph, shows how these three results imply a
polynomial-time algorithm that indeed gives a good approximation for the (mATSP) with high probability.

In the next theorem, to analyze the running time of the Held-Karp relaxation of (ATSP), we will need
some definitions of Automata theory such as alphabets, words, languages, and size of a word. These are given
in Section 6.3 where we also present the optimization and separation problems. Moreover, we will use an
encoding scheme, or simply encoding. Roughly speaking, an encoding of a problem is a function that maps
the problem instances to strings of an alphabet. In our case, we will map digraphs, represented abstractly
with vertex and edge set, to strings of an alphabet with three symbols. The encoding we will choose is a

12

member of a family of encodings that we now introduce. Our presentation is based on Garey and Johnson [10,
Sections 1.2, 1.3, and 2.1], where one can find a good description of encodings.

Recall that the time complexity analysis of an algorithm for a problem is done as a function of the input
size of the problem. The input size of an instance of a problem, in turn, can only be determined once an
encoding is fixed, and different choices of encoding can produce different inputs sizes for the same instance.
Therefore, the input size, and so the time complexity analysis of an algorithm will be impacted by the choice
of an encoding.

Following principles such as “conciseness” and “decodability”, one can design so-called “reasonable” encod-
ings. These principles and what is meant by a “reasoanable” encoding are not formal definitions. However,
the encodings that seem to follow those principles also seem to share an interesting property. Although two
“reasonable” encodings may produce different input sizes for the same problem instance, they will probably
differ at most polynomially from one another. That is, any algorithm that has polynomial-time complexity
under one “reasonable” encoding would probably have polynomial-time complexity under all the others;
when two encodings have this relation, they are called polynomially related. Thus, as long as one chooses a
“reasonable” encoding, the polynomial-time complexity of the problem should not be affected.

Therefore, we present and use a recognized “reasonable” encoding for digraphs using adjancecy matrices
of digraphs. One can verify this encoding is polynomially related with other standard and “reasoanable”
encodings for digraphs, such as listing all vertices and arcs of the digraph, or for each vertex of the digraph
listing all the arcs incident to it. In [10, Sections 1.3], Garey and Johnson compare these three encodings for
graphs.

The adjacency matrix AD ∈ RV×V of a digraph D = (V,A) without parallel arcs is defined as

AD(i, j) := [ij ∈ A] for each i, j ∈ V . (3.7)

Set D to be the set of all (finite) digraphs without parallel arcs. Suppose, without loss of generality, that if
(V,A) ∈ D with n := |V |, then V = {v1, v2, . . . , vn}. Set Σ := {0, 1, /} to be an alphabet. Define the function
e : D → Σ∗ as

e(D) := AD(v1, v1) . . . AD(v1, vn)/AD(v2, v1) . . . AD(v2, vn)/ . . . /AD(vn, v1) . . . AD(vn, vn) , (3.8)

for each D ∈ D.

Theorem 3.5. The Held-Karp relaxation of (ATSP) is polynomial-time solvable.

Proof. First, we show that the Held-Karp relaxation of (ATSP) is an optimization problem for a family of
polyhedra (Pσ)σ∈Π (see Definition 6.6), for some language Π, that satisfies (6.22). To do that, we show both
problems have the same input and the same task.

Set D to be the set of all (finite) digraphs without parallel arcs. Consider the encoding e of D using
adjacency matrices of digraphs as in (3.8). Set Π := e[D]. Note that e is injective, and then e−1[σ] is an
element of D for each σ ∈ Π (see image and preimage definitions in Section 2.2). Thus, we have that any
input of the Held-Karp relaxation of (ATSP) can be given by a word σ ∈ Π and a cost function c : A→ R+,
where A := A(e−1(σ)), so that this problem has the same input of an optimization problem for some family
of polyhedra (Pσ)σ∈Π.

Now let σ ∈ Π be a word, and set D := (V,A) := e−1(σ) to be the corresponding digraph by the encoding e.
Also, let c : A→ R+ be a cost function. Note that each string w of Π has the form w = s1/s2/ . . . /sk, where
k is a positive integer and si belongs to {0, 1}[`], for some positive integer `, for each i ∈ [k]; so one can
efficiently test whether a string of Σ∗ belongs to Π. Also, note that with one traversal of the symbols of σ
one can build the set A, and so the set Eσ := A can be computed from the word σ in time polynomial in |σ|.
Then (6.22a) is satisfied. Moreover, consider the linear program (3.1) for D and c, and then set Pσ ⊆ QA to
be the polyhedron determined by the system of inequalities (3.1b), (3.1c), and (3.1d). Each inequality of
those that determine Pσ has |A|+ 1 terms with coefficients equal to 0 or 1; thus, each inequality has size
upper bounded by a polynomial in |σ| as one can see that |A| ≤ |σ|, i.e., Pσ satisfies (6.22b). Therefore, the
family (Pσ)σ∈Π satisfies (6.22), and we are done for the first part.

Now we show the optimization problem for the family (Pσ)σ∈Π is polynomial-time solvable. Let us consider
the separation problem for the family (Pσ)σ∈Π as given in Definition 6.7. Let σ ∈ Π, and let x ∈ QEσ where
Eσ := A(e−1[σ]). Also, set D := (V,A) := e−1[σ]. To decide whether x belongs to Pσ, it is sufficient to test

13

if x satisfies the system of inequalities that determine Pσ. The constraint (3.1d) is readily tested in time
O(|A|). For constraint (3.1c), first we have O(|V |) steps to range over all vertices of V ; then, for each such
step, we have to sum some entries of x. Since for each a ∈ A there exist exactly two distinct vertices u, v ∈ V
such that a ∈ δ in(u) and a ∈ δ out(v), we have

∑
v∈V |δ in(v)| =

∑
v∈V |δ out(v)| = |A|, and then there are, in

total, O(|A|) entries of x being added. Thus, we can test the constraints in (3.1c) in time O(|V |+ |A|).
For constraint (3.1b), at a first glance, it seems we would have to test Θ(2|V |) inequalities which, regardless

the cost of each inequality, is not done in time O(p) for any polynomial p in |V | and |A|. However, if we have
computed a vertex set ∅ 6= U∗ (V such that 1T

δ out(U∗)x ≤ 1
T
δ out(U)x for each ∅ 6= U (V , then checking

(3.1b) would be reduced to checking just the following inequality

1
T
δ out(U∗)x ≥ 1 , (3.9)

which can be done in time O(|A|). It turns out we can find a such vertex set in polynomial time. First,
note that the edge set δ out(U∗) is an s-t cut of minimum capacity, for capacity function x, in D for any
s ∈ U∗ and any t ∈ V \ U∗. Second, the problem of, given two distinct vertices s, t of V , finding an s-t cut of
minimum capacity, with respect to x, in D is polynomial in |V | and |A|. Thus, to find U∗ we just have to
find an s-t cut of minimum capacity in D over all distinct vertices s, t in V . More precisely, we can iterate
over all distinct vertices s, t in V ; then for each such distinct vertices s, t in V we can run the Edmonds-Karp
algorithm (see Section 4.2) that returns an s-t cut of minimum capacity in D in time O(|V ||A|2); finally,
through all iterations we keep a set U∗ such that 1T

δ out(U∗)x is minimum. Hence, in time O(|V |3|A|2) we find
a such set U∗ and in time O(|A|) we check (3.9), i.e., in time O(|V |3|A|2) we test (3.1b) for x.

Therefore, testing if x ∈ Pσ can be done in time polynomial in |V | and |A| which in turn, as |V | and |A|
are polynomials in |σ|, is a polynomial in |σ|. In other words, the separation problem for the family (Pσ)σ∈Π

is polynomial-time solvable. Thus, by Theorem 6.8, the optimization problem for the family (Pσ)σ∈Π is
polynomial-time solvable, and hence the Held-Karp relaxation of (ATSP) is polynomial-time solvable too.

The following algorithm constitutes the final step in the proof of Theorem 3.7, and ultimately, the final
step of Algorithm 3.1. Consider an input D, D′, W of Algorithm 3.2. We can loosely denote the arcs of D′
as “copies” of the arcs of D, that is, for each arc a ∈ A, the arcs (a, β) ∈ A× N are “copies” of a. However,
note that there might exist some arc a of D that does not have a “copy” in D′. Also, note that the set A′
could be any finite set; the choice of being a subset of A× N is made to facilitate the comparison with the
arcs of D in Theorem 3.6.
Algorithm 3.2: ShortcutEulerHalmiltonian(D, D′, W)
Input:

(i) a complete digraph D = (V,A, ψ),
(ii) an Eulerian digraph D′ = (V ′, A′, ψ′) that is weakly connected and that V ′ = V , A′ ⊆ A× N,

and ψ′((a, β)) = ψ(a) for each (a, β) ∈ A′,
(iii) a Eulerian cycle W = (v0, a1, v1, . . . , ak, vk) in D′.

Output: A Hamiltonian circuit C in D.

1. C := (v0)
2. i := 0 // During the algorithm, vi will be the last vertex of the current walk C.
3. for j ← 1 to k do
4. if vj /∈ V (C) then
5. Set a ∈ A such that ψ(a) = vivj // Such arc exists as D is complete and vi 6= vj.
6. C := C · (vi, a, vj)
7. i := j

8. Set a ∈ A such that ψ(a) = vivk
9. return C · (vi, a, vk)

Theorem 3.6. Let D, D′, W be as in the input of Algorithm 3.2. Let c : A→ R+ be a cost function that
satisfies the triangle inequality. Set c′ : A′ → R+ to be a cost function where c′((a, α)) := c(a) for each
(a, α) ∈ A′. Then C := ShortcutEulerHalmiltonian(D,D′,W) is a Hamiltonian circuit in D with cost upper
bounded by the cost of W .

14

Proof. In algorithm ShortcutEulerHalmiltonian, note that the walk C is built through a sequence of mutations
that starts with setting C to (v0), and then continues with a sequence of concatenations of the current C and
a walk of unit length whose vertices lie in W and the arc lies in D.

Since D′ is weakly connected and W is an Eulerian trail, we have V (W) = V ; also, as D is a complete
digraph, for any two distinct vertices u, v ∈ V , we have uv, vu ∈ ψ(A). Thus, we can indeed build a
Hamiltonian circuit with the vertices of W and the arcs of D; we show that is the case when we run
ShortcutEulerHalmiltonian for D, D′, and W .

Let v ∈ V . Set ` to be the smallest integer such that v` = v. If ` = 0, then v is added to C in Line 1. If
` ≥ 1, then in Line 4 we have v /∈ V (C), and so v is added to C. Then each vertex of V is added to C at
least once.

Suppose there exists r > ` in [k] such that v` = vr = v. Then in the r iteration of loop in Line 3, the
algorithm would consider adding this vertex to C. If ` = 0, then v would have been added to C in Line 1,
and if ` > 0, then v would have been added to c in the ` < r iteration of loop in Line 3; then v would not be
added again in C by the condition in Line 4. Thus, all vertices of C, except the last vertex of C, are pairwise
distinct. Finally, the first and last vertices of C are v0. Therefore, C is a Hamiltonian circuit in D.

Now, we show C has cost upper bounded by the cost of W . Set n := |V |, that is, the length of C as C
is a circuit. By construction, C = (w0, b1, w1 . . . , bn, wn) which is defined as: the sequence (w0, . . . , wn−1)
is the subsequence of (v0, . . . , vk) where all occurrences of a vertex in W were removed except its first, and
w0 = wn = v0; for each i ∈ [n], we have that bi is the arc of A such that ψ(bi) = wj−1wj .

Since the sequence of vertices of C is a subsequence of the sequence of vertices of W and the first and last
vertices of C are the first and last vertices of W , respectively, for our goal it suffices to show that the cost of
an arbitrary segment (u, b, v) of C is upper bounded by the cost of the corresponding segment of W from u
to v (see segment definition in Section 2.3). Then let i ∈ [n], and set ` and r to be the smallest integers such
that v` = wi−1 and vr = wi so that we compare the cost of the segment P := (wi−1, bi, wi) of C with the
cost of the segment Q := (v`, a`+1, v`+1, . . . , ar, vr) of W . Since c satisfies the triangle inequality, we have
cbi ≤ c′a`+1

+ · · ·+ c′ar , i.e., P has cost upper bounded by the cost of Q.

Theorem 3.7. Let D, c, x∗, z∗, Gz∗ , c∗ be defined as in Definition 3.2. Consider the problems (ATSP) and
(3.1), both with respect to D and c, and set OPT and OPTHK to be their optimal values, respectively. Then
there exists a polynomial-time algorithm that, given an (α, s)-thin tree T ∗ of Gz∗ for some α ≥ 1 and s ∈ R+,
finds a Hamiltonian circuit in D with cost at most (2α+ s)OPTHK ≤ (2α+ s)OPT.

Proof. Set ~T ∗ to be an orientation of T ∗ where each edge of T ∗ is oriented in the direction of minimum cost,
that is, for each edge {u, v} ∈ E(T ∗), if cuv ≤ cvu, then uv ∈ A(~T ∗), otherwise, vu ∈ A(~T ∗). Note that, by
definition of c∗ in (3.3) and definition of ~T ∗, the cost of T ∗ equals the cost of ~T ∗, i.e.,

1
T
E(T∗)c

∗ = 1
T
A(~T∗)

c . (3.10)

We will augment ~T ∗ with some arcs with both ends in V so that it becomes an Eulerian digraph D′ with cost
upper bounded by (2α+ s)OPTHK, and then we will build a Hamiltonian circuit C in D, from an Eulerian
cycle W in D′, with cost upper bounded by the cost of D′. So first, we show we can

find an Eulerian digraph D′ on vertex set V that contains ~T ∗ as a subdigraph (3.11)
and has cost upper bounded by (2α+ s)OPTHK.

Recall that a digraph D′ is Eulerian if it is weakly connected (i.e., its underlying graph is connected), and if
indegD′ = outdegD′ . Moreover, since the underlying graph of ~T ∗ is T ∗, a tree on vertex set V , any digraph
on vertex set V that contains ~T ∗ as a subdigraph is weakly connected. So, for a digraph D′ to be a solution
candidate of (3.11), it suffices that

D′ has vertex set V , D′ contains ~T ∗, and indegD′ = outdegD′ . (3.12)

Using the condition (3.12), we show how a problem involving nonnegative integral circulations (see circulation
definition in (4.24)) solves (3.11).

Let f ∈ RA+ be a nonnegative integer circulation in D. Define the digraph D′ associated to circulation f
as D′ := (V ′, A′, ψ′) where V ′ := V , A′ := { (a, β) ∈ A× N : 1 ≤ β ≤ fa}, and ψ′((a, β)) := ψD(a) for each

15

(a, β) ∈ A′. In other words, the digraph D′ has the same vertex set of D, and for each a ∈ A with fa > 0, it
has fa arcs with the same head and tail as arc a. By [15, (11.3)], each nonnegative integer circulation is the
sum of incidence vectors of directed circuits. Hence, the digraph D′ can be decomposed in circuits, and then
indegD′ = outdegD′ . Moreover, suppose we identified each arc a of D with the arc (a, 1) of D′ so that we
can compare D′ with ~T ∗, and define the cost of each arc (a, β) in A′ as ca. Thus, the digraph D′ satisfies
(3.12) if f ≥ 1A(~T∗), and then if we can find such circulation f with cost upper bounded by (2α+ s)OPTHK,
the digraph D′ solves (3.11), and we are done for the first part.

A circulation f ∈ RA+, with f ≥ 1A(~T∗), of minimum cost is found by solving the minimum-cost circulation
problem for the digraph D, the integer lower capacity function ` := 1A(~T∗), the upper capacity function
u :=∞ · 1, and the cost function c, that is,

Minimize cTf , (3.13a)

subject to 1T
δ in
D (v)f = 1

T
δ out
D (v)f for each v ∈ V , (3.13b)

fa ≥ `a for each a ∈ A , (3.13c)

By [15, Corollary 12.2a.], there is a polynomial-time algorithm that solves this problem and, since `, u are
integral, finds an integer circulation as an optimum solution. Hence, it only remains to show its optimal value
is upper bounded as desired. If we look at the following subset of the feasible region of (3.13)

{ f ∈ RA : f is a circulation, and ` ≤ f ≤ u := `+ 2αx∗} , (3.14)

we have that any circulation f in the set from (3.14) will have the desired cost, and so an optimal solution f∗
of (3.13) too, that is,

cTf∗ ≤ cTf ≤ cTu = cT(`+ 2αx∗) = cT1A(~T∗) + 2αcTx∗
(3.10)

= 1
T
E(T∗)c

∗ + 2αcTx∗
(3.6)
≤ s ·OPTHK + 2αcTx∗

= (2α+ s)OPTHK .

So we reduce our task to show the set in (3.14) is nonempty. By Hoffman’s Circulation Theorem (see
Theorem 4.16), it is necessary and sufficient to show that

1
T
δ in
D (S)` ≤ 1

T
δ out
D (S)u for each S ⊆ V . (3.15)

Thus, first note that 1T
δ in
D (S)

` = |A(~T ∗) ∩ δ in

D (S)|, and set G := Gz∗ . Second, if vw ∈ A(~T ∗), then {v, w} is
an edge of T ∗ and G, since ~T ∗ is an orientation of T ∗ and T ∗ is a subgraph of G; so vw ∈ A(~T ∗) ∩ δ in

D (S)
implies {v, w} ∈ E(T ∗) ∩ δG(S). Also, if vw ∈ δ in

D (S), then wv /∈ δ in

D (S). Hence,

|A(~T ∗) ∩ δ in

D (S)| ≤ |E(T ∗) ∩ δG(S)|
≤ α1T

δG(S)z
∗ as T ∗ is an α-thin tree (see Definition 3.1)

= α

(
1− 1

n

)(
1
T
δ in
D (S)x

∗ + 1
T
δ out
D (S)x

∗
)

by item (ii) of Proposition 3.3

= α

(
1− 1

n

)(
21T

δ out
D (S)x

∗
)

by (3.1c)

< 1
T
δ out
D (S)u as u = `+ 2αx∗ with ` ≥ 0 and (1− 1/n) < 1 .

Therefore, (3.14) is nonempty, and we can solve (3.11), and in polynomial-time.
Now let f∗ be an integer optimum solution of (3.13), and set D′ to be the digraph associated to f∗.

Let W be a Eulerian cycle in D′ that can be found in polynomial time by, for instance, Fleury’s algorithm.
We shortcut W into a walk C := ShortcutEulerHalmiltonian(D,D′,W) (see Algorithm 3.2), and then, by
Theorem 3.6, C is a Hamiltonian circuit in D of cost upper bounded by the cost of W , which is the cost
of D′ since W is an Eulerian trail in D′.

16

Theorem 3.8 (Main Result). Let D = (V,A) be a complete digraph, and let c : A→ R+ be a cost function
that satisfies the triangle inequality. Set n := |V |. Then ApproxATSP(V, c) is a (2+8 lnn/ ln lnn)-approximate
solution to the instance of (mATSP) determined by D and c, with high probability, and in time polynomial
in the size of the input.

Proof. By Theorem 3.5, we find in Line 1, in polynomial time, an optimal solution x∗ for the Held-Karp
relaxation of the (mATSP) determined by D and c. Then define z∗ from x∗ as in (3.2), and define Gz∗ as in
Definition 3.2.

By Theorem 5.30, we find in Line 2, in polynomial time and with high probability, an (4 lnn/ ln lnn, 2)-thin
tree T ∗ of Gz∗ .

Finally, by applying Theorem 3.7 to T ∗, we find in Line 3, in polynomial time, a Hamiltonian circuit C in
D that is a (2 + 8 lnn/ ln lnn)-approximate solution to the instance of (mATSP) defined by D and c.

Moreover, since each of the three lines of Algorithm 3.1 is done in polynomial time, the whole algorithm
takes polynomial time.

17

Chapter 4

Max-Flow Min-Cut and Circulations

4.1 The Max-Flow Min-Cut Theorem
Let D = (V,A, ψ) be a digraph, and let s and t be distinct vertices of V . A function f : A→ R is an s-t flow
if it satisfies the following conditions:

f(a) ≥ 0 for each a ∈ A , and (4.1a)

1
T
δ in(v)f = 1

T
δ out(v)f for each v ∈ V \ {s, t} . (4.1b)

Let us denote the net amount of flow entering a subset of vertices by the excess function excessf : P(V)→ R
defined by excessf (U) := 1

T
δ in(U)f − 1

T
δ out(U)f for each U ⊆ V . For simplicity, set excessf (v) := excessf ({v})

for any v ∈ V .
The net amount of flow leaving s is called the value of an s-t flow f , and it is defined as value(f) := − excessf (s).

The following proposition presents two identities regarding the arcs incident to a subset of vertices of V . We
will use this proposition to prove Theorem 4.2.

Proposition 4.1. Let D = (V,A, ψ) be a digraph, and let U ⊆ V . Then∑
u∈U

1δ in
D (u) = 1A[U] + 1δ in

D (U) , and (4.2)∑
u∈U

1δ out
D (u) = 1A[U] + 1δ out

D (U) . (4.3)

Proof. Let a ∈ A. Since δ in

D (u) ∩ δ in

D (v) = ∅ for each u, v ∈ V distinct, it follows that(∑
u∈U

1δ in
D (u)

)
a

= [a ∈ δ in

D (w) for some w ∈ U]

= [(there exist v ∈ U and w ∈ U such that ψ(a) = (v, w)) or

(there exist v ∈ U and w ∈ U such that ψ(a) = (v, w))]

= [(a ∈ A[U]) or (a ∈ δ in

D (U))]

=
(
1A[U] + 1δ in

D (U)

)
a
,

where the last equality holds since A[U] ∩ δ in

D (U) = ∅. This proves (4.2).
Now let D−1 = (V,A, ψ−1) be the reverse digraph of D, where ψ−1(a) = ψ(a)−1 for each a ∈ A (recall

definition in Section 2.3). Then δ out

D (u) = δ in

D−1(u) for each u ∈ U , and so δ out

D (U) = δ in

D−1(U). Moreover, note
that for each a ∈ A, ψ(a) ∈ U × U iff ψ−1(a) ∈ U × U , and hence A[U] = A−1[U]. Thus,∑

u∈U
1δ out

D (u) =
∑
u∈U

1δ in
D−1 (u) = 1A−1[U] + 1δ in

D−1 (U) = 1A[U] + 1δ out
D (U) ,

where the second equality holds by (4.2) applied to D−1. This proves (4.3).

18

The next result regards the excess function excessf for any function f : A→ R, where A is the set of arcs
of a digraph. When we applied the result to an s-t flow of a digraph D = (V,A, ψ) we discover that: the net
amount of flow entering a subset U of V equals the sum, for each vertex u of U , of the net amount of flow
entering u.

Theorem 4.2. Let D = (V,A, ψ) be a digraph, and let f : A→ R. Then for every U ⊆ V we have

excessf (U) =
∑
u∈U

excessf (u) . (4.4)

Proof. By definition of excess function, we have

∑
u∈U

excessf (u) =
∑
u∈U

(
1δ in(u) − 1δ out(u)

)T
f =

(∑
u∈U

(
1δ in(u) − 1δ out(u)

))T

f

=

(∑
u∈U

1δ in(u) −
∑
u∈U

1δ out(u)

)T

f =
((
1A[U] + 1δ in(U)

)
−
(
1A[U] + 1δ out(U)

))T
f

=
(
1δ in(U) − 1δ out(U)

)T
f = excessf (U),

where the fourth equality follows from Proposition 4.1.

The equation (4.4) of last theorem reveals two interesting properties of the excess function. To explain
that, let D = (V,A, ψ) be a digraph, let f : A→ R be a function (f is not necessarily an s-t flow for s, t ∈ V
distinct), and let excessf be an excess function. On the one hand, excessf can have a compact representation.
For instance, the image of excessf for just |V | points suffices to compute its image for all 2|V | points of its
domain. On the other hand, for each U ⊆ V , to compute

∑
u∈U excessf (u) is reduced to compute excessf (U).

In other words, to compute
∑
u∈U excessf (u) for each U ⊆ V , instead of taking into account the image of f

for each arc that enters or leaves a vertex u ∈ U , which would comprise the arcs with both ends in U , that is,
A[U], and the arcs with exactly one end in U , that is, δ in(U) ∪ δ out(U), we can just look at the image of f
for the arcs with exactly one end in U .

Besides these properties of the excess function, when applied to s-t flows of a digraph, Theorem 4.2
provides interesting consequences that we will see in the next four corollaries, which, in turn, underlie the
main results of the section and chapter. First, for a digraph D = (V,A, ψ), vertices s, t ∈ V distinct, an s-t
flow f , and an excess function excessf , if we set U := V , then we shall conclude that there exists a vertex
u ∈ V with excessf (u) > 0 iff there exists a vertex v ∈ V with excessf (v) < 0. Equivalently, we shall conclude
that either the excess function is identically zero or it has entries with both signs (and they cancel out since
excessf (V) = 0). This result is going to be useful soon, for example, in the proof of Theorem 4.16, the
Hoffman’s circulation theorem.

Corollary 4.3. Let D = (V,A, ψ) be a digraph, let s, t ∈ V be distinct, and let f : A→ R be an s-t flow. Set
S := { v ∈ V : excessf (v) > 0} and T := { v ∈ V : excessf (v) < 0}. Then either excessf = 0 or S 6= ∅ 6= T .

Proof. Suppose S 6= ∅ and T = ∅. Then
∑
v∈V excessf (v) =

∑
v∈S excessf (v) +

∑
v/∈S excessf (v) > 0.

However, by Theorem 4.2, we have
∑
v∈V excessf (v) = excessf (V) = 0. The proof for S = ∅ and T 6= ∅ is

similar.

Let D = (V,A, ψ) be a digraph, let s, t ∈ V be distinct, and let f be an s-t flow in D. The following
two corollaries provide two alternative forms to compute value(f). These forms will come in handy when
we analyze our main problem of trying to increase value(f) with f subject to some constraints. Since
value(f) = − excessf (s), the next corollary, in particular, says the value of f equals the net amount of flow
entering t.

Corollary 4.4. Let D = (V,A, ψ) be a digraph, let s, t ∈ V be distinct, and let f : A → R be an s-t flow.
Then

excessf (s) = − excessf (t) .

19

Proof. Set U := V \ {t}. On the one hand, excessf (s) =
∑
u∈U excessf (u) by the flow conservation condition

(4.1b). On the other hand, by Theorem 4.2, we have excessf (U) + excessf (t) = excessf (V) = 0, so
− excessf (t) = excessf (U). Thus, the result comes from applying the equation of Theorem 4.2 for this set U .

Let D = (V,A, ψ) be a digraph, and let s, t ∈ V be distinct. A subset B of A is called an s-t cut if
B = δ out(U) for some U ⊂ V with s ∈ U and t /∈ U . The following result shows that for any s-t flow f in D
and for any U ⊂ V that defines an s-t cut, the value of f equals the net amount of flow leaving U .

Corollary 4.5. Let D = (V,A, ψ) be a digraph, let s, t ∈ V be distinct, let f : A→ R be an s-t flow, and let
U ⊂ V with s ∈ U and t /∈ U . Then value(f) = − excessf (U).

Proof. We have value(f) = − excessf (s) by the definition of value of f . On the other hand, we have
− excessf (s) = − excessf (U) by the flow conservation condition (4.1b) and by Theorem 4.2.

Let D = (V,A, ψ) be a digraph, let s, t ∈ V be distinct, and let u : A→ R+. An s-t flow f is said to be
under u or subject to u if f ≤ u, and u is usually called a capacity function. For B ⊆ A, it is usual to call
1
T
Bu the capacity of B. Thus, we see next that the value of any s-t flow is bounded above by the capacity of

any s-t cut.

Corollary 4.6. Let D = (V,A, ψ) be a digraph, let s, t ∈ V be distinct, and let u : A→ R+. Then for any
s-t flow f subject to u and any U ⊂ V with s ∈ U and t /∈ U it holds that

value(f) ≤ 1
T
δ out(U)u .

Proof. By Corollary 4.5, we have

value(f) = − excessf (U) = 1
T
δ out(U)f − 1

T
δ in(U)f ≤ 1

T
δ out(U)f ≤ 1

T
δ out(U)u ,

where the first inequality follows from non-negativity (4.1a) of f and 1δ in(U) ≥ 0, and the second one from
the fact that f ≤ u and 1δ out(U) ≥ 0.

By this point, we have introduced the excess function and some of its properties and, from this function,
we find out some relations involving the value of an s-t flow. The latter relation represents the first step in
establishing the best upper bound possible for the value of an s-t flow that will culminate in the max-flow
min-cut theorem. This concerns the problem we now introduce. A maximum flow is an s-t flow f subject
to u of maximum value, and the problem of finding such flow in a digraph is called the maximum flow
problem. Its formulation as an optimization problem, i.e., with an objective function and a set of constraints
that define its feasible region, is as follows:

Maximize value(f) , (4.5a)

subject to 1T
δ in(v)f = 1

T
δ out(v)f for each v ∈ V \ {s, t} , (4.5b)

f ≤ u , (4.5c)

f ∈ RA+ , (4.5d)

and it provides a pleasant surprise as we now see. First, notice that the feasible region is determined only by
non-strict linear inequalities and equations on f . Besides, the objective function is also linear in f . Thus,
(4.5) is actually a linear program as we define in (2.10).

The following result shows that there always exist an s-t flow of maximum value. We could prove that
using a result from real analysis, due to Weierstrass, that says: if g : X → R is a continuous function, and if X
is a nonempty, closed and bounded subset of Rn, then there exist x1, x2 ∈ X such that g(x1) ≤ g(x) ≤ g(x2)
for each x ∈ X. In the case of the maximum flow problem (4.5) with digraph D = (V,A, ψ), the function
would be f ∈ { f ∈ RA : f is an s-t flow in D under u} 7→ value(f) ∈ R. However, we prove the existence of
a maximum flow, taking advantage of the linear programming formulation of the problem.

Proposition 4.7. Let D = (V,A, ψ) be a digraph, let s, t ∈ V be distinct, and let u : A→ R+. Then there
exists an s-t flow f in D subject to u of maximum value.

20

Proof. We look at (4.5). By Corollary 4.6, the problem (4.5) is bounded. Besides, its feasible region is
nonempty, since f = 0 is a feasible solution. Therefore, as a result of being a bounded and feasible linear
program, by Theorem 2.4, the maximum flow problem has an optimum solution.

Let D = (V,A, ψ) be a digraph, let s, t ∈ V be distinct, and let u : A → R+. Let f : A → R be an s-t
flow subject to u, and set n := |V |. Now that we know a maximum flow always exists, the problem is how
to find one, and efficiently. We develop here an idea involving what we call pushing flow through s-t paths
in D in order to increase the value of f . Recall, from Corollary 4.4, that value(f) equals the net amount
of flow entering t. So in essence, we will try to increase the amount of flow entering t by searching for s-t
paths in D in which we can increase f while f continues to be an s-t flow subject to u. More precisely, let
P = (s, a1, . . . , ak, t) be an s-t path in D for k ∈ [n− 1], and set ε := mini∈[k]{u(ai)− f(ai)}. If ε > 0, then
we can increase f , in each arc of A(P), by the same positive value, smaller than or equal to ε, so that f is
still an s-t flow in D and the amount of flow entering t increases. This seems a good start; however, if we
look at the two digraphs in Figure 4.1, we cannot increase the current s-t flows by this approach but still
they are not maximum.

s t

v

w

10/10

0/10

0/10

10/10

10/10

(a)

s

t

v

w

0/10

10/10

10/10

10/10

(b)

Figure 4.1: Unable to push flow through s-t paths, but still both current s-t flows are not maximum

In the digraph of Figure 4.1a, we could increase 10 units of flow in (s, w) while redirecting the flow from
(v, w) to (v, t). In the digraph of Figure 4.1b, we could decrease 10 units of flow leaving from t while, in
order to maintain the flow conservation condition (4.1b) in v, increasing the flow in (s, v) by 10 units. In
both cases, we would increase the value of the flow by 10 units, and since this would saturate the capacity
of the arcs leaving s, by Corollary 4.6, we would have a maximum flow. This suggests we should consider
decreasing flow from arcs in our strategy to find a maximum flow. So is our first approach totally doomed?
Not exactly. We introduce next a new digraph where pushing flow through s-t paths will be associated with
pushing and/or decreasing flow of the corresponding s-t paths in the original digraph, and hence applying
our first approach in the new digraph will lead us to a maximum flow in the original digraph.

Let D = (V,A, ψ) be a digraph, let s, t ∈ V be distinct, let u : A→ R+, and let f : A→ R be an s-t flow
subject to u. Let Df = (V,Af , ψf) be the digraph such that Af := F ∪B where

F := { (a,+1) ∈ A× {+1} : f(a) < u(a)} and B := { (a,−1) ∈ A× {−1} : f(a) > 0} , (4.6)

and the incidence function is defined by

ψf ((a, α)) := ψ(a)α , (4.7)

for each (a, α) ∈ Af with a ∈ A and α ∈ {−1,+1} (recall that (v, w)−1 = (w, v) for any v, w ∈ V). This
digraph is called the residual digraph of D with respect to f and u (the digraph D and the capacity
function u usually can be deduced from the definition of the s-t flow f ; in that case, we just say residual
digraph of f). The capacity function uf : Af → R+ associated with Df is called residual capacity and
defined by

uf ((a, α)) :=

{
u(a)− f(a) , if α = +1 ,

f(a) , if α = −1 ,
(4.8)

21

for each (a, α) ∈ Af with a ∈ A and α ∈ {−1,+1}. Note that Df has at most twice many arcs as D since
the set of arcs Af of Df is a subset of A× {−1,+1}.

Now we detail the relation between the arcs of A and Af , and we establish how pushing flow in an arc of
Df changes f . Let a ∈ A. If f(a) < u(a), then we can push at most u(a)− f(a) units of flow in a so that
f remains subject to u. We represent that possibility by the arc (a,+1) in F , the set of so-called forward
arcs, with ψf ((a,+1)) = ψ(a), and with capacity uf ((a,+1)) = u(a)− f(a). Then we establish that when
we push at most uf (a) units of flow in (a,+1) to that corresponds increasing f in a by the same amount.
At the same time, if f(a) > 0, then we can decrease at most f(a) units of flow in a so that f remains
non-negative. We represent that possibility by the arc (a,−1) in B, the set of so-called backward arcs, with
ψf ((a,−1)) = ψ(a)−1, and with capacity uf ((a,−1)) = f(a). Then we establish that when we push at most
uf (a) units of flow in (a,−1) to that corresponds decreasing f in a by the same amount.

Therefore, with the residual digraph Df we can not only represent how much f can change, increasing or
decreasing in each arc of D, so that f remains non-negative and subject to u but also, by just pushing flow
in the arcs of Df , increase or decrease f in each arc of D. However, when we modify f , we also want its
flow conservation condition (4.1b) satisfied so that f indeed remains an s-t flow in D, and we want that the
value of f increases. We claim that is what happens with f when we push flow through s-t paths in Df . We
illustrate that with the two digraphs of Figure 4.1.

In Figure 4.1a, denote by D = (V,A) the digraph, by f the current s-t flow in D, and by u the capacity
function. From Section 2.3, recall that as we state the digraph D as a pair, we have that A is a subset of
V × V and the omitted incidence function is the identity function. Consider the residual digraph Df of f . By
definition of residual digraph, since the flow in arcs (s, w) and (v, t) is smaller than their capacities, and the
flow in arc (v, w) is bigger than zero, we have that a1 := ((s, w),+1) and a3 := ((v, t),+1) are forward arcs in
Df while a2 := ((v, w),−1) is a backward arc in Df ; arcs a1, a2, a3 have 10 units of residual capacity. Thus,
P := (s, a1, w, a2, v, a3, t) is an s-t path in Df . Suppose we push 10 units of flow in P . Then f increases
10 units in arcs (s, w) and (v, t) and decreases 10 units in arc (v, w). By definition of residual capacity, f
continues to be non-negative and subject to u. Moreover, in vertex v the amount of flow that increases
entering by (s, w) is the same that decreases entering by (v, w), and in vertex w the amount of flow that
decreases leaving by (v, w) is the same that increases leaving by (v, t), i.e., the flow conservation (4.1b) for f
is satisfied. Finally, the amount of flow entering t increases by 10 units. In other words, f continues to be an
s-t flow in D and its value has increased.

In Figure 4.1b, we make a similar analysis. Again, denote the digraph by D = (V,A), the current s-t flow
in D by f , the capacity function by u, and consider the residual digraph Df of f . Since f((s, v)) < u((s, v))
and f((t, v)) > 0, we have that a1 := ((s, v),+1) is a forward arc in Df while a2 := ((t, v),−1) is a backward
arc in Df ; both a1, a2 have 10 units of residual capacity. Thus, P := (s, a1, v, a2, t) is an s-t path in Df .
Suppose we push 10 units of flow in P . Then f increases 10 units in arcs (s, v) and decreases 10 units in
arc (t, v). Again by definition of residual capacity, f continues to be non-negative and subject to u; in v the
amount of flow that increases entering by (s, v) is the same amount that decreases entering by (t, v) while in
w the amount of flow entering or leaving has not changed, i.e., the flow conservation condition (4.1b) for f is
satisfied; the amount of flow leaving t decreases by 10 units. Therefore, as before, f continues to be an s-t
flow in D and its value has increased.

Let D = (V,A, ψ) be a digraph, let s, t ∈ V be distinct, and let u : A→ R+. Let f be an s-t flow in D
subject to u, and let Df = (V,Af , ψf) be the residual digraph of f . Those cases we analyze in Figure 4.1 are
coherent with our claim that pushing flow through s-t paths in Df increase the value of f . However, is that
true for any s-t path in Df? For instance, if P is an s-t path in Df with at least three vertices, then each
vertex v in P that is neither s nor t can have either a forward or a backward arc in P entering v as well as
either a forward or a backward arc in P leaving v; this amounts to four cases to be analyzed regarding flow
conservation (4.1b). In the next Proposition 4.8, we prove our claim for any s-t path in Df . Before, we must
make a remark. Although we have mentioned pushing flow in the residual digraph, we will not actually work
with an s-t flow in the residual digraph. That was only a mean for illustration. In fact, we are going to use
the residual digraph only to decide how to modify an s-t flow in D. To do that we introduce the following
notation, and Proposition 4.8 should clarify its use.

22

For each s-t path P in Df , we define dirP ∈ RA by

dirP (a) :=

+1 , if (a,+1) ∈ A(P) ,

−1 , if (a,−1) ∈ A(P) ,

0 , otherwise ,
(4.9)

for each a ∈ A. Note that even if (a,−1) and (a,+1) are in Af , since P is a path in Df , they both cannot be
together in P . Thus, dirP is indeed a function.

Proposition 4.8. Let D = (V,A, ψ) be a digraph, let s, t ∈ V be distinct, and let u : A → R+. Let f be
an s-t flow in D subject to u, and let Df = (V,Af , ψf) be the residual digraph of f with residual capacity
function uf . If P is an s-t path in Df and 0 < ε ≤ uf (a) for each a ∈ A(P), then f ′ := f + ε · dirP is an s-t
flow in D subject to u. Moreover, value(f ′) = value(f) + ε > value(f).

Proof. First we show both non-negativity (4.1a) of f ′ and f ′ ≤ u. Let a ∈ A. If both (a,−1) and (a,+1) are
not in A(P), then dirP (a) = 0, and hence f ′(a) = f(a) and 0 ≤ f ′(a) ≤ u(a). If (a,−1) is a backward arc in
A(P), then dirP (a) = −1 and

f ′(a) = f(a)− ε ≥ f(a)− uf ((a,−1)) = f(a)− f(a) = 0 , and
f ′(a) = f(a)− ε ≤ f(a) ≤ u(a) .

If (a,+1) is a forward arc in A(P), then dirP (a) = +1 and

f ′(a) = f(a) + ε > f(a) ≥ 0 , and
f ′(a) = f(a) + ε ≤ f(a) + uf ((a,+1)) = f(a) + (u(a)− f(a)) = u(a) .

Now for f ′ we show flow conservation condition (4.1b) for each vertex of V except for s and t. Let
v ∈ V \ {s, t}. We show excessf ′(v) = 0. Suppose v /∈ V (P), and let a be an arc of D incident to v. Since
v /∈ V (P), it follows (a,−1) and (a,+1) are not in A(P), and hence dirP (a) = 0 with f ′(a) = f(a). Thus,
1
T
δ in
D (v)

f ′ = 1
T
δ in
D (v)

f and 1
T
δ out
D (v)f

′ = 1
T
δ out
D (v)f , and then excessf ′(v) = excessf (v) = 0.

Now suppose v ∈ V (P). Then there exists an arc (b, β) of P entering v and an arc (c, γ) of P leaving v.
We prove that they together do not change excessf (v), i.e., that excessf ′(v) = 0. Let an arc (a, α) ∈ A(P).
If α = +1 (forward case), then f ′(a) = f(a) + ε. On the other hand, if α = −1 (backward case), then
f ′(a) = f(a)− ε. Besides, we have excessf (v) = 0 by flow conservation condition (4.1b) for f . Thus,

excessf ′(v) = 1
T
δ in
D (v)f

′ − 1T
δ out
D (v)f

′

=
(
1
T
δ in
D (v)f +

[
(b,+1) ∈ δ in

A(P)(v)
]
ε−

[
(c,−1) ∈ δ out

A(P)(v)
]
ε
)

−
(
1
T
δ out
D (v)f −

[
(b,−1) ∈ δ in

A(P)(v)
]
ε+

[
(c,+1) ∈ δ out

A(P)(v)
]
ε
)
.

For each of the four possibilities of arc entering and arc leaving v in P (both (b, β) and (c, γ) can be a forward
or a backward arc), it holds from the last equation that excessf ′(v) = excessf (v) + ε− ε = 0.

Finally, we show value(f ′) = value(f) + ε. First, by definition, we have that value(f) = − excessf (s) =
1
T
δ out
D (s)f − 1

T
δ in
D (s)

f . Since P is a path and s is the first vertex of P , then s has only one arc (a, α), with
α ∈ {−1,+1}, incident to it in P and it is one leaving s. If α = −1, then a ∈ δ in

D (s) and it decreases 1T
δ in
D (s)

f

by ε. If α = +1, then a ∈ δ out

D (s) and it increases 1T
δ out
D (s)f by ε. Either way, we would increase value(f ′) by

ε with respect to value(f) as desired.

Although our ultimate goal in this section is to prove Theorem 4.10, the Max-flow Min-Cut theorem, we
can consider the last 3 results of this section by the perspective of creating an algorithm for the maximum
flow problem. In the next section, the algorithm we shall build is based on two facts: one can increase the
value of a flow by pushing flow in the corresponding residual digraph, which is proved by Proposition 4.8; a
criterion by which the algorithm can assert a flow is maximum and then terminate, that is, a flow is maximum
if and only if the corresponding residual digraph has no s-t paths. Proposition 4.9 shows that “no s-t paths in

23

the residual digraph” is a sufficient condition for the corresponding flow to be maximum while Theorem 4.10
shows it to be a necessary condition.

Moreover, we should notice that an interesting s-t cut is discovered in a digraph when the corresponding
residual digraph has no s-t paths, one that has minimum capacity among all s-t cuts of the digraph, which
is called minimum cut. Thus, we shall tie together the ideas of maximum flow, minimum cut, and residual
digraph with no s-t paths.

Proposition 4.9. Let D = (V,A, ψ) be a digraph, let s, t ∈ V be distinct, let u : A → R+. Let f be
an s-t flow in D subject to u, and let Df = (V,Af , ψf) be a residual digraph of f with residual capacity
function uf . Suppose Df has no s-t paths. Define U as the set of vertices reachable from s in Df . Then
value(f) = 1

T
δ out(U)u; consequently, f has maximum value, and δ out(U) has minimum capacity.

Proof. We have t /∈ U since Df has no s-t paths. Then, by Corollary 4.5, we have value(f) = 1
T
δ out(U)f −

1
T
δ in(U)f . If a ∈ δ

out(U), then f(a) = u(a); otherwise, (a,+1) ∈ Af and U would be extended to contain the
head of arc a. If a ∈ δ in(U), then f(a) = 0; otherwise, (a,−1) ∈ Af and U would be extended to contain
the tail of arc a. Therefore, we have value(f) = 1

T
δ out(U)u, and by Corollary 4.6, f has maximum value, and

δ out(U) has minimum capacity.

Theorem 4.10 (max-flow min-cut theorem). Let D = (V,A, ψ) be a digraph, let s, t ∈ V be distinct, and
let u : A→ R+. Then the maximum value of an s-t flow subject to u is equal to the minimum capacity of an
s-t cut.

Proof. Let f be an s-t flow in D of maximum value as Proposition 4.7 proves to exist. We will show an s-t
cut in D with capacity equals the value of f , and then, by Corollary 4.6, this must be an s-t cut in D of
minimum capacity.

Let Df be the residual digraph of f with residual capacity function uf . Suppose Df has an s-t path P .
Then, by Proposition 4.8, for ε := min{uf (a) : a ∈ A(P)} > 0, we have that f ′ := f + ε · dirP is an s-t flow
in D subject to u with value(f ′) = value(f) + ε, which contradicts the hypothesis about f .

Thus, Df has no s-t paths. Define U as the set of vertices reachable from s in Df . Then, by Proposition 4.9,
value(f) = 1

T
δ out(U)u.

4.2 The Edmonds-Karp Algorithm
From the proof of Theorem 4.10, we now develop the description of an algorithm that solves the maximum
flow problem (4.5) efficiently. First, we present the Ford-Fulkerson method from which we define the
algorithm. We call it a “method” rather than an “algorithm” because it has different implementations with
different running times; the algorithm that we present is one implementation of this method.

Let D = (V,A, ψ) be a digraph, let s, t ∈ V be distinct, and let u : A→ R+. The method starts with the
s-t flow f := 0 in D. While the residual digraph Df of f has s-t paths, the method does the following

Choose an s-t path P in Df , and reset f to a new s-t flow f ′ := f + ε · dirP

for ε := min{uf (a) : a ∈ A(P)} > 0 .
(4.10)

When Df has no s-t paths, the s-t flow f is a maximum flow by Proposition 4.9, and the method terminates
with f as its output.

The path P in (4.10) is called a (flow)-augmenting path as “by pushing flow through it”, that is,
by resetting f to f ′, the function f continues to be an s-t flow in D but with greater value than it has
before. At a first glance, that seems a promising method to solve the maximum flow problem. However, if in
step (4.10) an arbitrary s-t path is chosen, giving rise to the so-called Ford-Fulkerson algorithm, some
problems arise. First, if the capacity function is allowed to have irrational entries, an instance may be built
in which the algorithm does not terminate (see Schrijver [15, Section 10.4a.]). Second, the running time
of the so-designed algorithm is not bounded by a polynomial in the input size, that is, in |V |, |A|, and the
size of the representation of the capacities of vector u. Instead, one can show its running time is O(|A| · C)
where C :=

∑
a∈δ out

D (s) ua, i.e., it is bounded by a polynomial in the magnitude of the capacities numbers

24

and not in the size of the representation of them. Finally, as a matter of style, the algorithm does not have
a combinatorial evolution, i.e., the parameters that may characterize the algorithm progress may change
by noninteger numbers. For instance, in (4.10), since ε can be any real number, the s-t flow f ′, and so the
resultant f , can have noninteger entries.

Therefore, we show the algorithm due to Edmonds and Karp that makes a subtle but crucial choice
— in (4.10), it chooses P as a shortest s-t path of Df . As we shall see, this algorithm that we call the
Edmonds-Karp algorithm has all the three properties previously mentioned that the Ford-Fulkerson
algorithm lacks.

We start with an auxiliary result. Consider the context of (4.10). If there is an arc that is not in Af , but
it is in Af ′ , then its “reverse” arc is in the augmenting path P .

Proposition 4.11. Let D = (V,A, ψ) be a digraph, let s, t ∈ V be distinct, and let u : A → R+. Let
f : A→ R be an s-t flow subject to u. Let Df be the residual digraph of f , and let uf be its residual capacity
function. Moreover, let P be a shortest s-t path in the residual digraph Df , and set f ′ := f + ε · dirP for
ε := min{uf (a) : a ∈ A(P)} > 0. Also, let a ∈ A and α ∈ {−1,+1}. If (a, α) /∈ Af and (a, α) ∈ Af ′ , then
(a,−α) ∈ A(P).

Proof. If α = 1, then f(a) = u(a) and f ′(a) < u(a); thus, (a,−1) ∈ A(P). Otherwise, f(a) = 0 and f ′(a) > 0;
therefore, (a,+1) ∈ A(P).

Given a digraph D and any two vertices u, v ∈ V (D), we define distD(u, v) to be the length of a shortest
path between u and v in D. This function will be the first of two parameters that we will use to analyze the
Edmonds-Karp algorithm.

Let D = (V,A, ψ) be a digraph, let s, t ∈ V be distinct, and let u : A→ R+. As we have described in the
beginning of the section, given D, s, t, and u as input, the Ford-Fulkerson method will produce a sequence of
s-t flows f = (f0 := 0, f1, . . . , fk), for some k ∈ N, where, for each i ∈ [k], the s-t flow fi is defined from fi−1

as f ′ is defined from f in (4.10). Next, we show that the function dist is, in a sense given more precisely in
Lemma 4.12, nondecreasing when we consider, in this order, any two consecutive residual digraphs Dfi−1

and Dfi , for i ∈ [k], corresponding to the consecutive s-t flows fi−1 and fi in f . This will imply that dist
is “nondecreasing” when we consider, in this order, any two residual digraphs Dfi and Dfj , for i, j ∈ [k]
with i < j. This, together with the fact that any distance in D is at most |V | − 1, starts to reveal how
the algorithm evolves with respect to the function dist. We will get a better grasp on this relation between
algorithm progress and dist function in Corollaries 4.14 and 4.15.

Lemma 4.12. Let D = (V,A, ψ) be a digraph, let s, t ∈ V be distinct, and let u : A→ R+. Let f : A→ R
be an s-t flow subject to u. Let Df be the residual digraph of f , and let uf be its residual capacity
function. Moreover, let P be a shortest s-t path in the residual digraph Df , and set f ′ := f + ε · dirP for
ε := min{uf (a) : a ∈ A(P)} > 0. Then, for each w ∈ V ,

distDf (s, w) ≤ distDf′ (s, w) and distDf (w, t) ≤ distDf′ (w, t) . (4.11)

Proof. Suppose that
distDf (s, w) > distDf′ (s, w) , (4.12)

for some w ∈ V . Let w ∈ V be such vertex for which distDf′ (s, w) is minimum. Note that w 6= s. Let P ′ be
a shortest path from s to w in Df ′ , and let v ∈ V be the previous vertex to w in P ′. So there is an arc a ∈ A
and a scalar α ∈ {−1, 1} such that ψf ′((a, α)) = ψ(a)α = vw. By the choice of w, we know that

distDf (s, v) ≤ distDf′ (s, v) , (4.13)

otherwise, since distDf′ (s, v) = distDf′ (s, w)− 1 < distDf′ (s, w), we would have chosen v in w’s place. Thus,

distDf (s, v) ≤ distDf′ (s, v) ,

= distDf′ (s, w)− 1 , for v is the previous vertex to w in P ′ , (4.14)

< distDf (s, w)− 1 , by (4.12) .

25

Then vw /∈ ψf (Af), and as ψf and ψf ′ are defined as in (4.7) and ψf ′((a, α)) = vw, we cannot have (a, α) in
Af . However, we know (a, α) ∈ Af ′ with ψf ′((a, α)) = vw. Thus, by Proposition 4.11, (a,−α) ∈ A(P), and
then ψf ((a,−α)) = ψ(a)−α = wv, i.e., w is the previous vertex to v in P . Then distDf (s, v) = distDf (s, w)+1
which with (4.14) leads to distDf (s, w) + 1 < distDf (s, w)− 1, a contradiction. Hence, such vertex w does
not exist, and the first inequality in (4.11) is proved.

Now consider the reverse digraph D−1 of D (see reverse digraph definition in Section 2.3). Set g := f .
Note that g is an t-s flow in D−1 subject to u. Let Dg be the residual digraph of g, and let ug be the residual
capacity function of Dg. Note that Dg = D−1

f because Dg is the residual digraph of D−1 with respect to
g = f and u; also, as Ag = Af and g = f , we have ug = uf (see residual capacity function definition in (4.8)).
Moreover, note that P−1 is a shortest t-s path in Dg since P is a shortest s-t path in Df and Dg = D−1

f .
Still, note that ε = min{ug(a) : a ∈ A(P−1)} and dirP = dirP−1 (see definition of vector dir in (4.9)), and
set g′ := g + ε · dirP . Finally, note that

distDf (w, t) = distDg (t, w) and distDf′ (w, t) = distDg′ (t, w) , (4.15)

for each w ∈ V . Moreover, by replacing f , f ′, and s by g, g′, and t in the first inequality in (4.11), we have

distDg (t, w) ≤ distDg′ (t, w) for each w ∈ V ,

Thus, it follows the second inequality in (4.11).

We introduce the second parameter that we will use to analyze the Edmonds-Karp algorithm. Given a
digraph D, define

µ(D) := { a ∈ A : a ∈ A(P) for some shortest s-t path P in D} . (4.16)

We will see later how this parameter relates with the dist function. But first, we present an important
auxiliary result. To present this result and Corollary 4.14, we will build a new digraph D′ from D. The idea
is to add in D the “reverse” arc of each arc in µ(D).

Let D = (V,A, ψ) be a digraph. Define the digraph D+ = (V,A× {−1,+1}, ψ+) where

ψ+(a, α) := ψ(a)α for each (a, α) ∈ A× {−1,+1} . (4.17)

Identify each arc a ∈ A with the arc (a,+1) of D+ so that we can consider D as a spanning subdigraph of
D+. Define

µ(D)−1 := { (a,−1) ∈ A× {−1} : (a,+1) ∈ µ(D)} . (4.18)

Then define the digraph D′ = (V,A′, ψ′) where

A′ = A ∪ µ(D)−1 and ψ′ = ψ+�A′ . (4.19)

Theorem 4.13. Let D = (V,A, ψ) be a digraph, and let s, t ∈ V be distinct. Let D+ = (V,A× {−1,+1}, ψ+)
andD′ = (V,A′, ψ′) be the digraphs defined as in (4.17) and (4.19), respectively. Then distD(s, t) = distD′(s, t)
and µ(D) = µ(D′).

Proof. We claim it suffices to show that

distD(s, t) and µ(D) do not change when we add an arc of µ(D)−1 in A . (4.20)

Suppose, without loss of generality, that µ(D) = {(d1,+1), (d2,+1), . . . , (dk,+1)} for some k ∈ N.
Consider the sequence of digraphs (H0 := D,H1, H2, . . . ,Hk) where, for each i ∈ [k],

Hi := (V,Bi, φi) , where Bi := A(Hi−1) ∪ {(di,−1)} and φi := ψ+�Bi .

Suppose we have shown (4.20). The argument follows by induction on i ∈ [k]. Immediately we would have
distD(s, t) = distH1(s, t) and µ(D) = µ(H1). Suppose that, for i ∈ [k − 1], we have distD(s, t) = distHi(s, t)
and µ(D) = µ(Hi). Moreover, by (4.20) again, we have distHi(s, t) = distHi+1(s, t) and µ(Hi) = µ(Hi+1).
Thus, distD(s, t) = distHi+1(s, t) and µ(D) = µ(Hi+1). This completes the induction, and so we would have
the desired since Hk = D′. So (4.20) is indeed a sufficient condition for the proof of this theorem.

26

Now let (a,+1) ∈ µ(D) be an arc such that ψ(a,+1) = uv for u, v ∈ V . Also, define the digraph
H := (V,B, φ) where B := A ∪ {(a,−1)} and φ = ψ+�B. Suppose distD(s, t) 6= distH(s, t) or µ(D) 6= µ(H).
Note that distD(s, t) 6= distH(s, t) and µ(D) = µ(H) is false. Then µ(D) 6= µ(H) and the shortest s-t paths
in H have length at most distD(s, t). Hence, there is an s-t path in H of length at most distD(s, t) that
traverses (a,−1). Let P := (u0 := s, a1, u1, . . . , ai, ui := v, ai+1 := (a,−1), ui+1 := u, . . . , ap, up := t) be a
such path in H.

Since (a,+1) ∈ µ(D), there is a shortest s-t path in D that traverses (a,+1). Let Q := (v0 :=
s, b1, v1, . . . , bj , vj := u, bj+1 := (a,+1), vj+1 := v, . . . , bq, vq := t) be a such path in D. Now set

T := (V,B′, φ′) , where B′ := (A(P) ∪A(Q)) \ {(a,−1), (a,+1)} and φ′ := ψ+�B′ ,

to be a digraph. Note that T is a subdigraph ofD. Moreover, note that bj+2 ∈ A(T), where ψT (bj+2) = v vj+2 =
uivj+2, and so ui and vj+2 are adjacent in T ; also, note that ai+2 ∈ A(T), where ψT (ai+2) = uui+2 = vjui+2,
and so vj and ui+2 are adjacent in T . Thus, if i < j, setW := (u0, a1, u1, . . . , ai, ui, bj+2, vj+2, bj+3, . . . , bq, vq)
to be an s-t path in T so that the length of W is

i+ 1 + (q − (j + 2)) = distD(s, t) + (i− j)− 1 < distD(s, t) .

Otherwise, set W := (v0, b1, v1, . . . , bj , vj , ai+2, ui+2, ai+3, . . . , ap, up) to be an s-t path in T so that the length
of W is

j + 1 + (p− (i+ 2)) ≤ distD(s, t) + (j − i)− 1 < distD(s, t) .

In both cases, W is an s-t path in T — a subdigraph of D — of length smaller than the length of a shortest
s-t path in D, a contradiction.

Now we show how µ(D) relates with distD(s, t). Note that both dist and µ change by integer values, so
together they form a combinatorial description of the evolution of the algorithm. Moreover, the way in which
both parameters change, as the algorithm evolves, form a lexicographic order that we now define.

The strict lexicographic order on the Cartesian product R × R is the binary relation <lex on R
defined by

(a, b) <lex (a′, b′) if a < a′ or (a = a′ and b < b′) (4.21)

for each a, a′, b, b′ ∈ R. One can show that <lex is a strict total order (see items (i) to (iii) in Section 2.2),
i.e., <lex is asymmetric, transitive, and semiconnex.

Corollary 4.14. Let D = (V,A, ψ) be a digraph, let s, t ∈ V be distinct, and let u : A→ R+. Let f : A→ R
be an s-t flow subject to u. Let Df be the residual digraph of f , and let uf be its residual capacity
function. Moreover, let P be a shortest s-t path in the residual digraph Df , and set f ′ := f + ε · dirP for
ε := min{uf (a) : a ∈ A(P)} > 0. Then

(i) if distDf′ (s, t) = distDf (s, t), then µ(Df ′) (µ(Df) ,

(ii) (distDf (s, t),−|µ(Df)|) <lex (distDf′ (s, t),−|µ(Df ′)|) .

Proof. (i) First, we claim Df ′ is a subdigraph of (Df)′. Indeed, note that

(Af ′ \Af) ⊆ A(P)−1 ⊆ µ(Df)−1 and A((Df)′) = Af ∪ µ(Df)−1 ,

whence we have Af ′ ⊆ A((Df)′). Then µ(Df ′) ⊆ µ((Df)′). Moreover, by Theorem 4.13, µ((Df)′) = µ(Df).
Thus, µ(Df ′) ⊆ µ(Df).

Now by definition of ε, there exists an arc (a, α) ∈ A(P) such that ε = uf ((a, α)). If α = 1, then
dirP ((a, 1)) = 1 and f ′(a) = u(a), i.e., (a, 1) /∈ Af ′ ; if α = −1, then dirP ((a,−1)) = −1 and f ′(a) = 0, i.e.,
(a,−1) /∈ Af ′ . Then (a, α) /∈ Af ′ , and so µ(Df ′) (µ(Df).

(ii) By Lemma 4.12, we have distDf (s, t) ≤ distDf′ (s, t). Suppose distDf (s, t) = distDf′ (s, t); otherwise, we
are done. Then µ(Df ′) (µ(Df) by item (i), and so −|µ(Df)| < −|µ(Df ′)|.

Finally, besides the combinatorial and lexicographic pattern that characterizes the progress of the Edmonds-
Karp algorithm, the algorithm always terminates, i.e., in a finite number of steps the current residual digraph
does not have s-t paths. Moreover, the algorithm terminates in at most 2 |V | |A| iterations.

27

Corollary 4.15 (Complexity of Edmonds-Karp Algorithm). Let D = (V,A, ψ) be a digraph, let s, t ∈ V
be distinct, and let u : A → R+. Set m := |A|, and set n := |V |. Let f = (f0, f1, . . .) be a sequence of s-t
flows in D subject to u with the following properties: f0 = 0 and, for each i ∈ Z+, if there is an s-t path in
the residual digraph Dfi , then fi+1 := fi + ε · dirP for ε := min{ufi(a) : a ∈ A(P)} > 0 and P a shortest s-t
path in Dfi , otherwise, fi+1 = fi. Then f2mn+1 = f2mn.

Proof. Set I := { i ∈ Z+ : there exists an s-t path in Dfi}. Note that, by construction of the sequence f ,

if r ∈ I, then ` ∈ I for each nonnegative integer ` < r. (4.22)

So suppose 0 ∈ I, otherwise, I = ∅, and we are done. For convenience, for each i ∈ Z+, set disti := distDfi (s, t),
and set µi := µ(Dfi).

Consider the binary relation <lex on R defined as in (4.21). By item (ii) of Corollary 4.14, for each i ∈ I,
we have (disti,−|µi|) <lex (disti+1,−|µi+1|). Also, as <lex is a strict total order, it is transitive (see item (ii)
in Section 2.2). Thus, for each distinct i, j in I, we have (disti,−|µi|) 6= (distj ,−|µj |). Moreover, note that,
for each i ∈ I, we have disti ∈ [n− 1] and |µi| ∈ [2m]. Thus,

|I| ≤ |[n− 1]× [2m]| ≤ 2mn . (4.23)

Therefore, by (4.22) and (4.23), for each integer r ≥ 2mn+ 1, we have r /∈ I, and so fr = f2mn.

4.3 Hoffman’s Circulation Theorem
Let D = (V,A, ψ) be a digraph. A vector f ∈ RA is a circulation in D if

1
T
δ in
D (v)f = 1

T
δ out
D (v)f for each v ∈ V . (4.24)

The following theorem states a characterization for the existence of circulations.

Theorem 4.16 (Hoffman’s circulation theorem). Let D = (V,A, ψ) be a digraph, let ` : A → R+ and
u : A→ R+ ∪ {+∞} such that ` ≤ u. Then there exists a circulation f ∈ RA such that ` ≤ f ≤ u if and only
if, for every S ⊆ V , we have

1
T
δ in(S)` ≤ 1

T
δ out(S)u. (4.25)

Moreover, the theorem remains true if all occurrences of R are replaced with Z throughout all the statements.

28

Chapter 5

Randomized Algorithms and
Sampling Spanning Trees

Recall that our main goal is to show we can run ApproxATSP (see Algorithm 3.1) in polynomial time. This
chapter aims to prove Theorem 5.30 that guarantees we can perform Line 2 of ApproxATSP in polynomial
time.

Let D,x∗, z∗, Gz∗ be as in Definition 3.1, and set n := |V |. In essence, we will round the point z∗ to
a spanning tree T of Gz∗ such that no cut of Gz∗ contains many edges of T (bound given by a constant
and z∗), and the cost of T is at most two times the cost of x∗. In a bit more detail, the steps will be (not
exactly in presentation order): show z∗ belongs to the spanning tree polytope of Gz∗ ; determine a randomized
polynomial-time algorithm that rounds z∗ to a spanning tree of Gz∗ and whose probability space has some
special properties; show that using this algorithm, we can find, in polynomial time and with high probability,
a spanning tree of Gz∗ that is (α, 2)-thin for α := 4 lnn/ ln lnn.

Since Line 2 is the randomized part of ApproxATSP, we start introducing in Section 5.1 some basic
definitions and results on probability theory in the discrete case. Then in Section 5.2 we show some so-called
concentration bounds, mainly a Chernoff bound for the sum of 0-1 negatively correlated random variables
that will be crucial to prove we can find the desired tree with high probability. Next in Section 5.3, we present
the Randomized Swap Rounding (RSR), a randomized polynomial-time algorithm that rounds a point in the
spanning tree polytope of a graph to a spanning tree. We also show the probability space used by RSR has
some special properties. In Section 5.4, we show z∗ ∈ Psptree(Gz∗) and that algorithm RSR is indeed the
one we need, with some properties, to round z∗ to a spanning tree of Gz∗ . In Section 5.5, given a connected
graph with no loops and at least two vertices, we provide a polynomial, in the size of its vertex set, upper
bound for the number of cuts with weight at most a factor of the minimum weight of a cut. This result, due
to Karger, will be decisive to show the spanning tree of Gz∗ sampled from RSR, with z∗ as input, is α-thin
with high probability. Finally, in Section 5.6, we gather all the knowledge acquired — concentration bounds,
RSR, Karger’s result — to prove Theorem 5.30.

5.1 Discrete Probability
A finite probability space is an ordered pair (Ω,P), where Ω is a nonempty finite set called sample space
whose elements are called outcomes or elementary events, and P is a function from P(Ω) to R such that

P({ω}) ≥ 0 for each ω ∈ Ω, (5.1)∑
ω∈Ω

P({ω}) = 1 , and (5.2)

P(E) =
∑
ω∈E

P({ω}) for each E ⊆ Ω; (5.3)

29

function P is called the probability function, each subset E of Ω is called an event, and P(E) is the
probability of E ⊆ Ω.1 For simplicity, we write P(ω) instead of P({ω}) for each ω ∈ Ω.

As immediate consequences of the definition of probability function in (5.1) to (5.3), we have

P(∅) = 0 , (5.4)
P(Ω) = 1 , and (5.5)
P(ω) ≤ 1 for each ω ∈ Ω. (5.6)

Since events are sets, it is natural to wonder how set operations between events impact the probability
function. In the next proposition we analyze the set operations of union and complementation.

Proposition 5.1. Let (Ω,P) be a finite probability space. Let A,B be events of Ω. Then

(i) (Principle of Inclusion-Exclusion) P(A ∪B) = P(A) + P(B)− P(A ∩B).

(ii) (Union Bound) For any countable family {Ei}i∈I of events of Ω, we have P(∪i∈IEi) ≤
∑
i∈I P(Ei).

(iii) P(A ∪B) = P(A) + P(B) if A and B are disjoint.

(iv) P
(
A
)

= 1− P(A).

(v) P(A) ≤ P(B) if A ⊆ B.

You may have been wondering about the set operation of intersection between events. Now we present
the conditional probability, and then the independence of events that use such operation. Let (Ω,P) be a
finite probability space, and let A,B be events of Ω. If P(B) 6= 0, we define

P(A |B) :=
P(A ∩B)

P(B)
(5.7)

to be the conditional probability of A given B (similarly for P(A |B)). Actually, we have just created
another probability function with respect the same sample space. One can show that if P(B) 6= 0, then
P(· |B) : S ∈ P(Ω) 7→ P(S |B) satisfies (5.1) to (5.3) and (Ω,P(· |B)) is a finite probability space. In this new
probability space, the probability of events outside B is zero, the probability of B is one, and the relative
magnitudes of the outcomes inside B is preserved, that is, for each ω ∈ B we have P(ω |B) = αP(ω) where α
ends up being 1/P(B) (the value of α is a consequence of P(B |B) = 1 and P(ω |B) = 0 for each ω /∈ B).

Before proceeding to the independence definition, we present two important relations.

Proposition 5.2 (Multiplication Rule). Let P = (Ω,P) be a finite probability space. Let {Ai}i∈[n] be a
family of n ∈ N events in Ω such that P(Aj | ∩1≤i<j Ai) > 0 for each 1 < j ≤ n. Then

P
(
∩i∈[n]Ai

)
= P(A1)P(A2 |A1)P(A3 |A1 ∩A2) · · ·P(An | ∩1≤i<n Ai) . (5.8)

Proposition 5.3 (Law of total probability). Let P = (Ω,P) be a finite probability space. Let A be an event
of Ω, and let {Bi}i∈I be a partition of Ω such that P(Bi) > 0 for each i ∈ I. Then

P(A) =
∑
i∈I
P(A ∩Bi) =

∑
i∈I
P(A)P(A |Bi) . (5.9)

1We should mention that this is not the general definition of a probability space, in the sense that it only deals with finite
sample spaces. We have chosen this probability framework since it completely describes our study case with a lighter notation
and simpler treatment. When the sample space is infinite, and one tries to define the probability function as in (5.3) — define
the probability of events as the sum of the probability of outcomes — usually the probability of some event ends up becoming
infinity, which violates (5.2). One can refer to [11], for instance, to check out the broader approach that solves this issue; we give
a glimpse here.

The general definition of a probability space is as an ordered triple (Ω,Σ,P), where Σ is a set of subsets of Ω satisfying some
closure properties that make it a σ-algebra of Ω, and the probability function P is defined a bit differently. The idea is to define
the probability only for the events that lie in Σ, which usually are not all subsets of the sample space if Ω is uncountable; also,
the closure properties of a σ-algebra guarantee, in essence, the probability function is defined for all subsets of Ω of interest.
In our case, the sample space Ω is always finite, and the Σ is always P(Ω). Thus, we decided to omit Σ, and define this

particular case — finite probability space — as an ordered pair. Still, we say a discrete probability space when the sample
space is countable (also called countably infinite).

30

In particular, if B is an event of Ω such that P(B) > 0 and P
(
B
)
> 0, then

P(A) = P(A)P(A |B) + P(A)P
(
A |B

)
. (5.10)

Let (Ω,P) be a finite probability space, and let A,B be events of Ω. We say A and B are independent
if P(A ∩B) = P(A) · P(B). Note that if P(A) 6= 0 and P(B) 6= 0, then the following are equivalent: A and
B are independent; P(A |B) = P(A); P(B |A) = P(B). One should not confuse independence with disjoint
events. For instance, if P(A) 6= 0 and P(B) 6= 0 and A,B are disjoint, it follows immediately from definition
of independence that A and B are not independent.

Recall that the conditional probability is just a probability function in the same original sample space.
Thus, we can consider another definition of independence according to the conditional probability function
of some event. Let C be an event of Ω such that P(C) 6= 0. Then given event C, the events A and B are
conditionally independent if

P(A ∩B |C) = P(A |C)P(B |C) , (5.11)

i.e., events A,B are independent according to P(· |C) (in the finite probability space (Ω,P(· |C))). Equivalently,
one can show using the definition of conditional probability and the Proposition 5.2 that given event C, the
events A and B are conditionally independent if

P(A |B ∩ C) = P(A |C) or P(B |C) = 0 , (5.12)

i.e., if P(B |C) 6= 0 and given C has occurred, the probability of A does not change if we know that B has
occurred ((5.11) is also equivalent to (5.12) if we swap A and B, and this equivalent condition has a similar
interpretation to the one we give in this paragraph for (5.12)).

When one analyzes a random experiment, it is common to have more interest in some derived information
of the event than in the event itself. For instance, in the experiment of flipping a coin a few times, one may
be only interested in the probability that a certain number of heads are obtained and ignores which sequences
of coin flips form the corresponding event. Thus, as we next see, the random variables and their distributions
come in handy. Ultimately, we will be dealing with the probability of events in a probability space. However,
the random variables and their distributions allow us to represent events and compute their probabilities
more easily (for instance, the above-mentioned coin toss experiment) and even compute probabilities of an
underlying probability space whose sample space is unknown.

Let P = (Ω,P) be a finite probability space. A function X : Ω→ R is called a random variable2 (on P).
Let X : Ω→ R be a random variable. Define the function PX : P(R)→ [0, 1] as

PX(S) := P(X−1(S)) = P({ω ∈ Ω : X(ω) ∈ S}) for each S ⊆ R , (5.13)

i.e., PX = P ◦X−1; this function is called the (probability) distribution of X. Although PX is another
function in P, we will represent it through P and predicates involving X. For instance, P(X ∈ S) := PX(S)
for each S ⊆ R; also, P(X = a) := PX(a) := PX({a}) for each a ∈ R.

So suppose we have again the random experiment of coin tosses. Then, given the probability space
(Ω,P) that represents it, we could define a random variable X : Ω → R where X(ω) would be the number
of heads in the outcome ω ∈ Ω; thus, given an arbitrary x ∈ N we could look at P(X = x) instead of
P({ω ∈ Ω : X(ω) = x}).

Let P = (Ω,P) be a finite probability space, and let X : Ω → R be a random variable. The expected
value or expectation of X, denoted by E[X], is defined as

E[X] :=
∑

x∈Im(X)

xP(X = x) . (5.14)

2If the probability space P is an ordered triple (Ω,Σ,P) and Σ is a proper subset of P(Ω), then to X be a random variable, it
also needs to be Σ-measurable, that is, X−1(a) ∈ Σ for each a ∈ R. Since in our finite case the sigma-algebra is always P(Ω) so
that we have omitted it, it is sufficient for us to check that X is a function from Ω to R.

31

Since Ω is finite3, we have

E[X] =
∑

x∈Im(X)

x
∑

ω∈Ω s.t.
X(ω)=x

P(ω) =
∑
ω∈Ω

∑
x∈Im(X)

x [X(ω) = x]P(ω) =
∑
ω∈Ω

X(ω)P(ω) . (5.15)

Now we find ways to build new random variables from random variables.

Let P = (Ω,P) be a finite probability space. Let X be a random variable on P.
Moreover, let f : R→ R be a function. Since f ◦X is a function from Ω to R,
we have that f ◦X is a random variable on P ;

(5.16)

we denote f ◦X by f(X), and we say f(X) is a function of X. The next proposition shows how to write the
distribution and expectation of f(X) in terms of the distribution of X. Moreover, it shows that applying a
function to independent random variables preserves their independence.

Proposition 5.4 (Function of single random variable). Let P = (Ω,P) be a finite probability space. Let
X,Y be random variables on P. Moreover, let f, g be functions from R to R. Then

(i) (Distribution)

P(f(X) = y) =
∑

x∈Im(X) s.t.
f(x)=y

P(X = x) =
∑

x∈Im(X) s.t.
f(x)=y

P(X = x) for each y ∈ Im(f(X)) . (5.17)

(ii) (Expectation)
E[f(X)] =

∑
x∈Im(X)

f(x)P(X = x) . (5.18)

(iii) If X and Y are independent, then f(X) and g(Y) are independent.

We can also think of a function of multiple random variables.

Let P = (Ω,P) be a finite probability space. Let X,Y be random variables on P.
Also, let f : R× R→ R be a function. Then f(X,Y) : ω ∈ Ω 7→ f(X(ω), Y (ω)) ∈ R
is a random variable on P as it is a function from Ω to R .

(5.19)

Similar to a function of a single random variable, we can present the following relations.

Proposition 5.5 (Function of multiple random variables). Let P = (Ω,P) be finite probability space. Let
X,Y be random variables on P. Moreover, let f : R× R→ R. Then

(i) (Distribution)
P(f(X,Y) = z) =

∑
x∈Im(X),

y∈Im(Y)

s.t. f(x,y)=z

P(X = x, Y = y) . (5.20)

(ii) (Expectation)
E[f(X,Y)] =

∑
x∈Im(X),

y∈Im(Y)

f(x, y)P(X = x, Y = y) (5.21)

Proposition 5.6. Let P = (Ω,P) be a finite probability space. Let X,Y be random variables on P. Then
3The expected value can also be defined if Im(X) is countable infinite, with an infinite series, or uncountable, with an integral.

In such cases, some convergence issues may arise which require a more detailed examination to determine when the expectation
indeed exists. In our case, since Ω is finite, we do not have such a problem, and we can directly have the equivalent expression in
(5.15) for the expectation of X.

32

(i) (Constant random variable) If X is a constant, that is, for some c ∈ R, we have X(ω) = c for each
ω ∈ Ω, then E(X) = c.

(ii) (Linearity of expectation) Let λ ∈ R. Then E[X + Y] = E[X] + E[Y] and E[λX] = λE[X].

(iii) (0-1 random variable) If X is a 0-1 random variable, that is, Im(X) = {0, 1}, then E[X] = P(X = 1).

(iv) (Product of independent random variables) If X and Y are independent, then E[X Y] = E[X]E[Y].

(v) (Cauchy-Schwarz inequality)
E[XY]2 ≤ E[X2]E[Y 2] . (5.22)

Let P = (Ω,P) be a finite probability space. Let X,Y be random variables on P , and let y ∈ R. Also, set
A := {ω ∈ Ω : Y (ω) = y}. Suppose P(Y = y) > 0, and so P(A) > 0. Then the conditional expectation of
X given A is the scalar defined by

E[X |A] :=
∑

x∈Im(X)

xP(X = x |A) . (5.23)

Similarly, the conditional expectation of X given that Y = y is defined by

E[X |Y = y] :=
∑

x∈Im(X)

xP(X = x |Y = y) . (5.24)

Finally, one can show that for an arbitrary function f : R→ R it holds

E[f(X) |A] :=
∑

x∈Im(X)

f(x)P(X = x |A) . (5.25)

Note that in E[X |A] we can consider that we are dealing with the random variable X on the probability
space (Ω,P(· |A)). Thus, (5.23) follows directly from (5.14). Now we present different versions of the so-called
law of total expectation.

Proposition 5.7 (Law of total expectation). Let P = (Ω,P) be a finite probability space. Let X,Y, Z be
random variables on P. Also, Let {Ai}i∈I be a partition of Ω such that P(Ai) > 0 for each i ∈ I. Then

E[X] =
∑
i∈I
E[X |Ai]P(Ai) . (5.26)

Moreover, for any event B of Ω such that P(Ai ∩B) > 0 for each i ∈ I, we have

E[X |B] =
∑
i∈I
E[X |Ai ∩B]P(Ai |B) . (5.27)

Set Y + := { y ∈ Im(Y) : P(Y = y) > 0}. Then

E[X] =
∑
y∈Y +

E[X |Y = y]P(Y = y) . (5.28)

Finally, set Z+ := { z ∈ Im(Z) : P(Z = z) > 0}. Then for any z ∈ Z+, we have

E[X |Z = z] =
∑

y∈Y + s.t.
P(Y=y , Z=z)>0

E[X |Y = y , Z = z]P(Y = y |Z = z) . (5.29)

Let P = (Ω,P) be a finite probability space. Let X,Y be random variables on P . We can rewrite the law
of total expectation if we introduce the following. Define the function

E[X |Y] : ω ∈ Ω 7→ E[X |Y = Y (ω)] ∈ R . (5.30)

Note that E[X |Y] is a function of Y (see (5.16)), and so a random variable on P. Moreover, suppose
P(Y = y) > 0 for each y ∈ Im(Y). Then, by (5.18),

E[E[X |Y]] =
∑

y∈Im(Y)

E[X |Y = y]P(Y = y) = E[X] , (5.31)

i.e., we have an alternative and compact form of writing the law of total of expectation.

33

5.2 Concentration Bounds
In this section we find bounds for the probability that a random variable deviates from some value, typically
its mean. Such bounds are called concentration bounds, and the associated probabilities and inequalities
are called tail probabilities and concentration inequalities, respectively.

Markov’s inequality presents the first bound. We will use this bound in the proof of Theorem 5.27,
and to prove the other concentration bounds of this section. To present this next result we make the following
definition. A random variable X on a probability space (Ω,P) is nonnegative if P(X < 0) = 0.

Theorem 5.8 (Markov’s inequality). Let P = (Ω,P) be a finite probability space. Let X be a nonnegative
random variable on P. Then, for each a > 0,

P(X ≥ a) ≤ E[X]

a
. (5.32)

Proof. Let a be a positive real. For each x ∈ Im(X) we have either x < a or x ≥ a. Set A to be the set
{x ∈ Im(X) : x ≥ a} so that A := Im(X) \ A = {x ∈ Im(X) : x < a}. Suppose A is nonempty; otherwise,
P(X ≥ a) = 0, and so with E[X] ≥ 0, since X is nonnegative, we have (5.32). Then

E[X] =
∑
x∈A

xP(X = x) +
∑
x∈A

xP(X = x) ≥
∑
x∈A

xP(X = x) ≥ a
∑
x∈A

P(X = x) = aP(X ≥ a) , (5.33)

where the first inequality holds since X and P are nonnegative (X is nonnegative by hypothesis and P is a
probability function, so it satisfies (5.1) and (5.3)), and the second inequality holds since P is nonnegative.
This shows (5.32).

Note that the bound given by Markov’s inequality decreases linearly with respect to the deviation term.
We can go a bit further with the Chebyshev’s inequality. This concentration bound decreases quadratically
with the deviation term.

Theorem 5.9 (Chebyshev’s inequality). Let P = (Ω,P) be a finite probability space. Let X be a random
variable on P. Then, for each a > 0,

P(|X − E[X]| ≥ a) ≤ Var(X)

a2
.

Proof. Let a be a positive real. Since a > 0, we have (X − E[X])2 ≥ a2 if and only if |X − E[X]| ≥ a. Thus,

P(|X − E[X]| ≥ a) =
∑

x∈Im(X) s.t.
|X−E[X]| ≥ a

P(X = x) =
∑

x∈Im(X) s.t.
(X−E[X])2≥ a2

P(X = x)

= P((X − E[X])
2 ≥ a2) .

Then, by Markov’s inequality (see Theorem 5.8),

P((X − E[X])
2 ≥ a2) ≤

E
[
(X − E[X])

2
]

a2
=

Var(X)

a2
.

The proof of Chebyshev’s inequality introduces a significant pattern for deriving or proving concentration
bounds. That is, for a tail probability one wants to bound, find an equivalent tail probability that is somehow
more convenient to apply Markov’s inequality.

We will exploit this pattern to find another crucial concentration bound from a family of bounds called
Chernoff bounds. These bounds can be found using the presented pattern with the equivalent tail probability
involving the moment-generating function.

The moment-generating function of a random variable X is the function MX(t) : t ∈ R 7→ E[etX].
This function can be used to find the moments of X. Informally and ignoring issues and details of convergence

34

and differentiation, for instance, we give a glimpse of how one could find a moment of X using such function.
From the Taylor expansion of etX we have

etX = 1 + tX +
t2X2

2!
+
t3X3

3!
+ · · ·+ tnXn

n!
+ · · · . (5.34)

Since etX is a function of a single random variable, by (5.16), etX is a random variable. Then

MX(t) = E[etX] = 1 + tE[X] +
t2E[X2]

2!
+
t3E[X3]

3!
+ · · ·+ tnE[Xn]

n!
+ · · · . (5.35)

Hence, if one differentiates i ≥ 0 times the moment-generating function E[etX], the resulting function for
t = 0 will be the ith moment. For instance, MX(0) is the 0-th moment, the total probability 1, and M ′X(0) is
the 1-st moment, the expectation of X.

Now we present a series of four lemmas that we will use to prove a Chernoff bound for the sum of 0-1
random variables that are negatively correlated (we define this property later). The proof of this bound will
start with Lemma 5.10 where we will use the discussed pattern with the moment-generating function. Note
that in this lemma we do not assume any relation (negative correlation in our case) between the random
variables.

Lemma 5.10. Let (Ω,P) be a finite probability space. Let X1, . . . , Xk : Ω→ {0, 1} be random variables for
some integer k ≥ 1. Set X :=

∑k
i=1Xi. Also, let δ > 0. Then

P(X ≥ (1 + δ)E[X]) = P
(
etX ≥ et(1+δ)E[X]

)
≤ E[etX]

et(1+δ)E[X]
for each t > 0 . (5.36)

Proof. Let t > 0, and let c ∈ R. Since X is a random variable, Im(X) is finite, and by the distribution of a
function of a random variable (see (5.17) of Proposition 5.4), we have

P(etX ≥ etc) =
∑

x∈Im(X)

s.t. etx≥ etc

P(X = x) .

Also, since x ∈ R 7→ etx is monotonically increasing, for each x ∈ Im(X) we have etx ≥ etc if and only if
x ≥ c. Then

P(etX ≥ etc) =
∑

x∈Im(X)
s.t. x≥ c

P(X = x) = P(X ≥ c) . (5.37)

Thus, if we replace the scalar c by the scalar (1 + δ)E[X] in (5.37), it follows that

P(X ≥ (1 + δ)E[X]) = P
(
etX ≥ et(1+δ)E[X]

)
≤ E[etX]

et(1+δ)E[X]
, (5.38)

where the last inequality follows from Markov’s inequality (see Theorem 5.8) since etX is a nonnegative
random variable and ex > 0 for each x ∈ R.

In Lemma 5.10, for a random variable X that was a sum of 0-1 random variables and a scalar δ > 0,
we have presented the tail probability P(X ≥ (1 + δ)E[X]) for which we will show a Chernoff bound in
Theorem 5.14, and we have found a family of bounds for it in function of some t > 0.

With the next two lemmas, we will bound the E[etX] in the RHS of (5.36) with some exponential function
involving t and E[X]. Before that, we introduce the crucial definition of this section that we start using in
the next lemma.

We say 0-1 random variables X1, . . . , Xn are negatively correlated if

P(∧i∈IXi = 1) ≤
∏
i∈I
P(Xi = 1) for each I ⊆ [n] (5.39)

or, equivalently,

E

[∏
i∈I

Xi

]
≤
∏
i∈I
E[Xi] for each I ⊆ [n] . (5.40)

35

Lemma 5.11. Let (Ω,P) be a finite probability space. Let X1, . . . , Xk : Ω→ {0, 1} be random variables, for
some integer k ≥ 1, that are negatively correlated. Then the random variables etX1 , . . . , etXk , for some t > 0,
are also negatively correlated.

Proof. Set X :=
∑k
i=1Xi. Since E

[
etX
]

= E
[∏k

i=1 e
tXi
]
, it suffices to show

E
[
etX
]
≤

k∏
i=1

E
[
etXi

]
. (5.41)

Define independent 0-1 random variables Y1, . . . , Yk that have distribution equal to X1, . . . , Xk, respectively,
i.e., P(Yi = 1) = P(Xi = 1) =: pi for each i ∈ [k] (note that we do not require the Yi’s to be in the same
probability space of the Xi’s). Also, set Y :=

∑k
i=1 Yi. By (5.16), etYi is a random variable for each i ∈ [k],

and, by (5.19), etY is a random variable. Moreover, note that, by item (iii) of Proposition 5.4, the etYi ’s are
independent since the Yi’s are independent. Then

E
[
etY
]

= E

[
k∏
i=1

etYi

]
=

k∏
i=1

E
[
etYi

]
=

k∏
i=1

E
[
etXi

]
,

where the second equality holds since the etYi ’s are independent and by item (iv) of Proposition 5.6. Thus,

to prove (5.41), it suffices to show E[etX] ≤ E[etY] . (5.42)

Since t > 0, by the expansion of the moment-generating function of an arbitraty random variable in (5.35),
we have

E[etX] ≤ E[etY] if E[Xα] ≤ E[Y α] for each integer α ≥ 1. (5.43)

So let α ≥ 1 be an integer. Note that Xα and Y α are polynomials whose terms, apart from the coefficients,
are all the products of the form

∏k
i=1X

αi
i and

∏k
i=1 Y

αi
i , respectively, for some integers α1, . . . , αk ≥ 0 with∑k

i=1 αi = α. Hence, by linearity of expectation (see item (ii) of Proposition 5.6),

E[Xα] ≤ E[Y α] if E

[
k∏
i=1

Xαi
i

]
≤ E

[
k∏
i=1

Y αii

]
for each integer α1, . . . , αk ≥ 0 with

k∑
i=1

αi = α . (5.44)

Let α1, . . . , αk ≥ 0 be integers such that
∑k
i=1 αi = α. Then, by expected value of a function of multiple

random variables (see (5.21) of Proposition 5.5), one has

E

[
k∏
i=1

Xαi
i

]
=

∑
x1∈Im(X1),...

(
k∏
i=1

xαii

)
P(X1 = x1, . . . , Xk = xk)

=
∑

x1∈Im(X1),...

(
k∏
i=1

xi

)
P(X1 = x1, . . . , Xk = xk) since Xi’s are 0-1 random variables

= E

[
k∏
i=1

Xi

]

≤
k∏
i=1

E[Xi] since Xi’s are negatively correlated

=

k∏
i=1

E[Yi] since Xi’s and Yi’s are both 0-1 r.v.’s with the same distribution

=

k∏
i=1

E[Y αii] since Yi’s are 0-1 random variables and by (5.18) of Proposition 5.4

= E

[
k∏
i=1

Y αii

]
,

(5.45)

36

where the last equality holds as the Yi’s are independent, and so the Y αii ’s are independent by item (iii)
of Proposition 5.4, and by item (iv) of Proposition 5.6.

Therefore, with (5.45), we have shown E[Xα] ≤ E[Y α] by (5.44), which in turn shows E[etX] ≤ E[etY]
by (5.43), which finally shows (5.41) by (5.42), and then completes the proof.

Lemma 5.12. Let (Ω,P) be a finite probability space. Let X1, . . . , Xk : Ω→ {0, 1} be random variables for
some integer k ≥ 1. Set X :=

∑k
i=1Xi. Also, let t > 0. Then

k∏
i=1

E
[
etXi

]
≤ e(et−1)E[X] .

Proof. Set pi := P(Xi = 1) for each i ∈ [k]. Since X1, . . . , Xk are 0-1 random variables, for any i ∈ [k] the
random variable etXi is either et with probability pi or 1 with probability 1− pi. Thus,

k∏
i=1

E
[
etXi

]
=

k∏
i=1

(1− pi + pie
t) =

k∏
i=1

(1 + pi(e
t − 1)) ≤

k∏
i=1

epi(e
t−1)

= e(et−1)(
∑k
i=1 pi) = e(et−1)(

∑k
i=1 E[Xi]) = e(et−1)E[X] ,

where the first inequality holds since ex ≥ 1 + x for each x ∈ R (see Proposition 2.3), and the second last
equality holds since Xi’s are 0-1 random variables, and so pi = E(Xi).

As we will see in the proof of Theorem 5.14, the last three lemmas will produce a family of bounds in
function of some scalar t > 0 that have the form of an exponential function involving t itself, a scalar δ > 0,
and the expected value of a random variable X that is a sum of 0-1 random variables that are negatively
correlated. In the next lemma, we abstract this exponential function and find which point minimizes it.

Lemma 5.13. Let α1, α2 ∈ R such that α1 > 0 and α2 6= 0. Let f : x ∈ R 7→ e(ex−1−α1x)α2 be a function.
Then ln(α1) is a minimum point of f .

Proof. One can show that any critical point of this function is a minimizer. Recall that a critical point is one
where the first derivative of the function is zero. Thus, we take the first derivative of f and set it to zero,
that is,(

e(ex−1−α1x)α2

)′
= 0⇔ e((ex−1−α1x)α2)((ex − 1− α1x)α2)′ = 0

⇔ ((ex − 1− α1x)α2)′ = 0 since ex 6= 0 for any x ∈ R
⇔ (ex − α1)α2 = 0

⇔ x = ln(α1) since α1 > 0 and α2 6= 0 .

Now we join the four last lemmas to find a Chernoff bound for the sum of 0-1 random variables that are
negatively correlated. We will use it to prove Lemma 5.25 — a bound regarding the probability that an
arbitrarily chosen cut violates the α-thinness property.

Note that independence between random variables implies negative correlation between the same random
variables. Hence, this Chernoff bound can be applied for sums of 0-1 random variables that are independent.

Also, note that this Chernoff bound decreases exponentially in the mean and the deviation δ, while, as we
have seen, the Markov and Chebyshev inequalities decrease linearly and quadratically, respectively. Thus, for
a specific random variable that we see next, this Chernoff bound represents a significant improvement when
compared with the inequalities of Markov and Chebyshev.

Theorem 5.14 (Chernoff Bound for sum of 0-1 random variables that are negatively correlated). Let (Ω,P)
be a finite probability space. Let X1, . . . , Xk : Ω→ {0, 1} be random variables, for some integer k ≥ 1, that
are negatively correlated. Also, set X :=

∑k
i=1Xi. Then for every δ > 0 we have

P(X ≥ (1 + δ)E[X]) ≤
(

eδ

(1 + δ)1+δ

)E[X]

. (5.46)

37

Proof. First, by Lemma 5.10 we have

P(X ≥ (1 + δ)E[X]) = P
(
etX ≥ et(1+δ)E[X]

)
≤ E[etX]

et(1+δ)E[X]
for each t > 0 . (5.47)

SinceX1, . . . , Xk are negatively correlated, we have that etX1 , . . . , etXk are negatively correlated by Lemma 5.11,
i.e.,

E

[
k∏
i=1

etXi

]
≤

k∏
i=1

E
[
etXi

]
.

Thus, as E[etX] = E
[∏k

i=1 e
tXi
]
, we have

E[etX] ≤
k∏
i=1

E[etXi] ≤ e(et−1)E[X] , (5.48)

where the last inequality holds by Lemma 5.12. Therefore, by (5.47) and (5.48),

P(X ≥ (1 + δ)E[X]) ≤ e(et−1)E[X]

et(1+δ)E[X]
= e(et−1−t(1+δ))E[X] for each t > 0. (5.49)

As we are interested in the lowest upper bound, we look for a t > 0 that minimizes this last function. By
Lemma 5.13, such point is ln(1 + δ). Thus, by replacing t by ln(1 + δ) in the RHS of equation in (5.49), we
have

P(X ≥ (1 + δ)E[X]) ≤

(
ee

ln(1+δ)−1

e(1+δ) ln(1+δ)

)E[X]

=

(
eδ

(1 + δ)(1+δ)

)E[X]

.

5.3 Randomized Swap Rounding
In this section, we present a polynomial-time randomized algorithm that rounds a point in the spanning
tree polytope of a graph to the incidence vector of a spanning tree of the graph. Moreover, we show the
probability space used by this randomized algorithm has some properties that will allow us to sample an
α-thin tree, for a desired value of α, with high probability. Thus, this rounding algorithm is crucial for the
development of our main algorithm, the ApproxATSP (see Algorithm 3.1) for the (mATSP); in particular, we
use it in Line 2 of that algorithm.

The algorithm is called randomized swap rounding, or RSR, and it is due to Chekuri, Vondrak, and
Zenklusen [5]. Actually, the algorithm described in that paper shows how to perform rounding in a more
general setting, namely rounding a point in a matroid polytope to the incidence vector of an independent set
of the matroid (see [16, Chapter 39]). The main routine of the algorithm is SwapRound(G, x), for a graph
G = (V,A, ψ) and a point x in its spanning tree polytope, that successively calls Merge(G, β1, T1, β2, T2) for
some scalars β1, β2 ∈ [0, 1] and spanning trees T1, T2 of G. Note that in the next algorithm and in some
proofs that follow, there will be operations of addition and subtraction involving graphs, subgraphs, vertex
and edge sets. These are defined in (2.9). Also, for a graph G, the set of spanning trees of G is denoted by T (G).

38

Algorithm 5.1: SwapRound(G, x)
Input:

(i) a graph G = (V,A, ψ),
(ii) a point x in Psptree(G).

Output: A random spanning tree T of G, where for each e ∈ E the associated 0-1 random variable
Xe := [e ∈ T] has expectation equal to xe, and the random variables in {Xe}e∈E are
negatively correlated (see (5.40)).

1. Find λ1, . . . , λr ≥ 0 with
∑r
`=1 λ` = 1 and T1, . . . , Tr ∈ T (G) such that x =

∑r
`=1 λ`1E(T`)

2. T ← T1

3. for k = 1 to r − 1 do
4. T ← Merge(

∑k
`=1 λ`, T, λk+1, Tk+1)

5. return T

Algorithm 5.2: Merge(G, β1, T1, β2, T2)
Input:

(i) a graph G = (V,A, ψ),
(ii) scalars β1, β2 ∈ R++,
(iii) spanning trees T1, T2 of G.

Output: A spanning tree of G.

1. while T1 6= T2 do
2. Pick i ∈ E(T1) \ E(T2) and find j ∈ E(T2) \ E(T1) s.t. T1 − i+ j and T2 − j + i lie in T (G)

3. With probability β1

β1+β2
, set T2 ← T2 − j + i. Else set T1 ← T1 − i+ j

4. return T1

Before we look at the complexity of RSR in Theorem 5.16, we analyze Line 2. It involves an exchange of
edges between two spanning trees that produces new spanning trees of the graph. Moreover, this exchange
property actually works in a more general setting that involves any two bases of a matroid.

Proposition 5.15 (Exchange Property,[16, Theorem 39.12.]). Let G = (V,E, ψ) be a graph. Let T1, T2 be
distinct spanning trees of G, and let i ∈ E(T1) \ E(T2). Then there exists an edge j ∈ E(T2) \ E(T1) such
that T1 − i+ j, T2 − j + i ∈ T (G). Moreover, such edges can be found in time polynomial in |V |+ |E|.

Proof. Set u and v to be the ends of edge i. Note that T2 + i has a unique circuit C; otherwise, T2 would
have more than one path between u and v, i.e., T2 would have a circuit. Also, note that T1− i is a graph with
two components, one containing vertex u and another containing vertex v. Moveover, P := C − i is a path
between u and v. Thus, G′ := T1 − i+ P is a connected spanning subgraph of G (see definitions in (2.9)).

Now we show there exists an edge j ∈ E(P), and so an edge of T2, such that T1 − i + j is a spanning
tree of G. Set S to be the set of acyclic subgraphs of G′, and consider the poset (S,⊆); see definition in
Section 2.2. We claim the following.

Let H ∈ S. Then H is maximal if and only if H is connected and V (H) = V , i.e., (5.50)
H is a spanning tree of G′ and G.

We show necessity by contrapositive. First suppose H is disconnected. Then there exists an edge e ∈ E(G′)
such that H + e ∈ S. Now suppose V (H) 6= V . Since G′ is connected, there exists an edge e ∈ E(G′) with
one end in V (H) and another end in V (G′) \ V (H), and so H + e ∈ S.

Now we show sufficiency. Let e ∈ E(G′) \ E(H). Since V (H) = V (G′), the ends of edge e lie in V (H).
Then, since H is connected, there exists a path in H between the ends of e. Hence, graph H + e has a circuit.
This proves (5.50).

Thus, since the graph T1 − i is disconnected and belongs to S, there exists j ∈ E(P) such that T1 − i+ j
is acyclic. Moreover, as T1 − i has two components, graph T1 − i+ j is connected, and so it is a spanning tree
of G′ and G.

39

Now, since T2 is a spanning tree and C is the unique circuit of T2 + i with i, j ∈ E(C), by removing edge j
from the graph T2 + i, it becomes acyclic but still connected and with vertex set equal to V , i.e., the graph
T2 + i− j = T2 − j + i (see definition in (2.9) to see the equality) is a spanning tree of G.

Finally, to find edge i we just check for each edge of T1 whether it is an edge of T2. To find edge j, we
first determine the circuit C using, for instance, a depth-first search, dfs for short. Then for each edge j of
the path P = C − i, we can test whether T1 − i+ j is a spanning tree of G using a dfs again.

Theorem 5.16 (Complexity of Randomized Swap Rounding). Given a point x ∈ Psptree(G) for a graph
G = (V,E, ψ), the randomized swap rounding algorithm runs in polynomial time.

Proof. By [16, Theorem 51.5.], a representation of x as a convex combination, as in Line 1, can be found in
polynomial time. So the number of terms of such representation is also polynomial, and we denote it by r.

Then the algorithm calls r − 1 times Merge (see Algorithm 5.2) that, apart from scalars, receives two
spanning trees T1 and T2 of G. Its loop in Line 1 ends when T1 and T2 are equal, or equivalently, when
|E(T1)∩E(T2)| = |V | − 1. Also, note that at each iteration of this loop, |E(T1)∩E(T2)| increases exactly by
one. Hence, the total number of iterations of loop in Line 1 is upper bounded by |V |.

Finally, by Proposition 5.15, edges i, j such as in Line 2 always exist and can be found in polynomial
time.

By Theorem 5.16, we know that the scalar r in Line 1 of Algorithm 5.1 is bounded by a polynomial
of the input size of SwapRound. Now we give an explicit upper bound. Let G = (V,E, ψ) be a graph, let
x ∈ Psptree(G), and consider a call to SwapRound with input G and x.

On the one hand, by definition in (3.4), Psptree(G) is the convex hull of incidence vectors of the spanning
trees of G. Moreover, we have Caratheódory’s theorem that we present without proof.

Theorem 5.17 (Caratheódory’s theorem, [17, Corollary 7.1j]). Let V be a finite set, and let X ⊆ RV . If
x ∈ convX, then there exist affinely independent vectors x0, . . . , xd ∈ X such that x ∈ conv{x0, . . . , xd}. In
particular, d ≤ dim(convX).

Thus, point x can be written as a convex combination of at most dim(Psptree(G)) + 1 terms. On the other
hand, recall that Psptree(G) is determined by (5.64). Also, (5.64c) determines a hyperplane H in RE ((5.64c) is
a linear equation with variables in RE) which is an affine set in RE of dimension |E|−1. Then Psptree(G) ⊆ H
and dim(Psptree(G)) + 1 ≤ dim(H) + 1 = |E|, i.e., r ≤ |E| ≤

(|V |
2

)
.

Suppose SwapRound is given a graph G = (V,E, ψ) and a point x in the spanning tree polytope of G.
Also, let

∑r
i=1 λi1E(Ti) be the convex combination that SwapRound finds in Line 1 for x. The descriptions

of SwapRound and Merge in Algorithm 5.1 and Algorithm 5.2, respectively, stress the manipulation of the
spanning trees T1, . . . , Tr until they become a single tree T , that is returned. Now we want to analyze another
perspective: how the point x evolves in Psptree(G) until it becomes the incidence vector of a spanning tree of G.
Next, by the randomized nature of the algorithm, we will present this progression as a random process, also
called a stochastic process, to derive relevant properties about the probability space used by the algorithm.

There are two viewpoints to consider: from SwapRound and Merge. At the level of the SwapRound
routine, the point x goes through r − 1 changes. First, SwapRound merges spanning trees T1 and T2

into a spanning tree T≤2 and sums their corresponding coefficients so that x =
∑r
`=1 λ`1E(T`) turns into

x = (λ1 + λ2)1E(T≤2) +
∑r
`=3 λ`1E(T`). At the kth step, for k ∈ {2, . . . , r − 1}, the spanning trees T1, . . . , Tk

have been merged into a spanning tree T≤k with corresponding coefficient equal to
∑k
`=1 λ`; then the spanning

trees T≤k and Tk+1 are merged into a spanning tree T≤k+1 and their corresponding coefficients are added so that
x =

(∑k
`=1 λ`

)
1E(T≤k) +

∑r
`=k+1 λ`1E(T`) turns into x =

(∑k+1
`=1 λ`

)
1E(T≤k+1) +

∑r
`=k+2 λ`1E(T`). Finally,

after r − 1 steps like that, we end up with only one spanning tree T≤r and x = (
∑r
`=1 λ`)1E(T≤r) = 1E(T≤r),

i.e., x is the incidence vector of a spanning tree of G.
However, each change of x from SwapRound’s point of view is composed of potentially many changes of x

from Merge’s point of view. More precisely, denote T1 by T≤1, and consider when SwapRound merges T≤k
and Tk+1 into T≤k+1 for an arbitrary k ∈ {1, . . . , r− 1}. To do this, it calls Merge(

∑k
`=1 λ`, T≤k, λk+1, Tk+1).

Then Merge performs a sequence of so-called elementary operations. An elementary operation corresponds
to one iteration of the loop in Line 1. Consider i ∈ E(T≤k) \ E(Tk+1) and j ∈ E(Tk+1) \ E(T≤k) to be the

40

edges swapped. Then this operation on T≤k and Tk+1, with the corresponding coefficients, will modify exactly
one of these trees so that they will have one more edge in common (eventually becoming the same spanning
tree), and

x =

(
k∑
`=1

λ`

)
1E(T≤k) + λk+11E(Tk+1) +

r∑
`=k+2

λ`1E(T`)

will turn into

x′ =

[(∑k

`=1 λ`

)
(1E(T≤k) − ei + ej)

]
+
[
λk+11E(Tk+1)

]
+
∑r
`=k+2 λ`1E(T`) if T≤k is modified ,[(∑k

`=1 λ`

)
1E(T≤k)

]
+
[
λk+1(1E(Tk+1) − ej + ei)

]
+
∑r
`=k+2 λ`1E(T`) if Tk+1 is modified ,

i.e., x will have exactly two components in RE changed: either components i and j decrease and increase,
respectively, by

∑k
`=1 λ`, or components j and i decrease and increase, respectively, by λk+1.

Now set T ′≤k and T ′k+1 to be T≤k and Tk+1 after the elementary operation just described, respectively.
Note that T ′≤k or T ′k+1 might be one of the trees Tk+2, . . . , Tr. Thus, when we write a convex combination∑m
`=1 µ`1E(T`), the spanning trees T1, . . . , Tm are not necessarily pairwise distinct. Independently of that,

if T ′≤k 6= T ′k+1, then another elementary operation will happen between T ′≤k and T ′k+1 with corresponding
coefficients

∑k
`=1 λ` and λk+1. Moreover, this will proceed until the two trees, that start being T≤k and Tk+1,

become equal, which happens in O(|V |) iterations (see Theorem 5.16).
Thus, we can describe an arbitrary elementary operation as follows. Given a convex combination

x =
∑r
`=1 µ`1E(T`) with T1, . . . , Tr not necessarily pairwise distinct, an elementary operation between trees

Tp, Tq for distinct p, q ∈ [r] will swap edges i ∈ E(Tp) \ E(Tq) and j ∈ E(Tq) \ E(Tp), and it will turn

x = µp1E(Tp) + µq1E(Tq) +
∑

`∈[r]\{p,q}

µ`1E(T`) (5.51)

into

x′ =

[
µp(1E(Tp) − ei + ej)

]
+
[
µq1E(Tq)

]
+
∑
`∈[r]\{p,q} µ`1E(T`) if Tp is modified ,[

µp1E(Tp)

]
+
[
µq(1E(Tq) − ej + ei)

]
+
∑
`∈[r]\{p,q} µ`1E(T`) if Tq is modified .

(5.52)

Moreover, note that if we set T ′p and T ′q to be Tp and Tq after the analyzed elementary operation for x,
respectively, then we can write vector x′ in a more compact form as

x′ = µp

(
1E(T ′p) − 1E(Tp)

)
+ µq

(
1E(T ′q)

− 1E(Tq)

)
+ x .

Finally, we present the evolution of x as a stochastic or random process, that is, a set of random variables
on a common probability space that are indexed by some set. Denote by t the total number of elementary
operations performed during the algorithm, and set I := {0, . . . , t}. Then to the sequence of t elementary
operations we can associate a random process {Xk}k∈I on a probability space (Ω,P), where for each k ∈ I,
we have a multivariate random variable, also called random vector, of the form

Xk : ω ∈ Ω 7→ Xk(ω) ∈ [0, 1]E , (5.53)

and for each e ∈ E we have Xk,e : ω ∈ Ω 7→ [Xk(ω)]e, a random variable on the same probability space.
For each k ∈ I, the random vector Xk represents the possible values that the vector x may assume after k
elementary operations. Now we want to prove in Theorem 5.20 the correctness of RSR, that is, that the
algorithm returns a spanning tree of G and that the last random vector Xt, corresponding to the random
spanning tree sampled by SwapRound, satisfies the output conditions in Algorithm 5.1. Actually, the second
part we will prove not only for Xt but for each random vector Xk where k ∈ I. We start with the following
lemma regarding the expectation of each random vector in this process.

41

Lemma 5.18. Let G = (V,E, ψ) be a graph, and let x ∈ Psptree(G). Suppose SwapRound is given graph G
and point x as input. Set t to be the total number of elementary operations that will be performed in
the algorithm, and set I := {0, . . . , t}. Moreover, as in (5.53), define the random process {Xk}k∈I on a
probability space (Ω,P) used by the algorithm. Also, suppose X0 is the constant random variable equal
to x. Then we have that E[Xk] = x for each k ∈ {0, . . . , t}. Moreover, for each k ∈ {1, . . . , t}, we have that
E[Xk |Xk−1 = z] = z for each z ∈ Im(Xk−1).

Proof. The proof is by induction on k. By hypothesis, X0 = x, and so E[X0] = x by item (i) of Proposition 5.6.
Suppose k ≥ 1 and E[Xk−1] = x.

Since Xk and Xk−1 are random vectors on the same probability space, E[Xk |Xk−1] is a random vector
(see (5.30) for the case involving random variables). Set X+

k−1 := { z ∈ Im(Xk−1) : P(Xk−1 = z) > 0}. Then,
from (5.28) of Proposition 5.7,

E[Xk] =
∑

z∈X+
k−1

E[Xk |Xk−1 = z]P(Xk−1 = z) .

Now consider the k-th elementary operation where we will analyze Xk given that Xk−1 is determined. Con-
sider a representation of Xk−1 as a convex combination Xk−1 = z :=

∑r
`=1 λ`1E(T`) for some λ1, . . . , λr in R+

with
∑r
`=1 λ` = 1 and T1, . . . , Tr ∈ T (G). Let p, q ∈ [r] be integers such that Tp and Tq are the spanning

trees involved in this elementary operation. Also, denote by T
′

p and T
′

q the spanning trees Tp and Tq after
this elementary operation, respectively. Note that we are considering an iteration of the loop in Line 3 where
T1 = Tp, T2 = Tq, β1 = λp, and β2 = λq. Moreover, let i ∈ E(Tp) \ E(Tq) and let j ∈ E(Tq) \ E(Tp) be the
edges to be swapped. Then

E[Xk |Xk−1 = z] = E

λp1E(T ′p) + λq1E(T ′q) +
∑

`∈[r]\{p,q}

λ`1E(T`)

=

λp
λp + λq

λp1E(Tp) + λq(1E(Tq) − ej + ei) +
∑

`∈[r]\{p,q}

λ`1E(T`)

+

λq
λp + λq

λp(1E(Tp) − ei + ej) + λq1E(Tq) +
∑

`∈[r]\{p,q}

λ`1E(T`)

=

λp
λp + λq

(z + λq(ei − ej)) +
λq

λp + λq
(z − λp(ei − ej)) (5.54)

= z .

Thus,

E[Xk] =
∑

z∈X+
k−1

E[Xk |Xk−1 = z]P(Xk−1 = z) =
∑

z∈X+
k−1

z P(Xk−1 = z) = E[Xk−1] = x

where the last equality holds by induction hypothesis.

Lemma 5.18 presents two interesting properties about the probability space used by RSR. Consider the
context of the statement of Lemma 5.18. First, the expected value of point x after any k ∈ I elementary
operations of RSR, including the point returned, is x itself. This does not mean the point x always remain
unaltered during the algorithm, and then it is returned. It means that if RSR is run multiple times with G
and x as input, the “sample average” of the points at each stage of the algorithm (i.e., after any fixed k ∈ I
elementary operations) tends to be x itself.

Second, Lemma 5.18 shows a similar tendency is also true after each elementary operation of the algorithm.
That is, given a point z during an intermediate stage of the algorithm, the expected value for z after the next
elementary operation is z itself. Moreover, to the algebraic account given in Lemma 5.18 for this fact, we
can add a revealing geometric argument. Consider the step (5.54) of proof of Lemma 5.18. There we are

42

analyzing an elementary operation involving a point z and edges i and j. With probability λp/(λp + λq) we
change z by λq along the direction ei − ej , while with complementary probability λq/(λp + λq) we change z
by λp along the opposite direction ej − ei. However, it turns out that

λp
λp + λq

λq(ei − ej) +
λq

λp + λq
λp(ej − ei) = 0 .

In other words, the directions of change of z weighted by their respective probabilities cancel each other, and
so if we simulate multiple times such elementary operation for z, the “sample average” of the points that z
would become would tend to be z itself.

Now the following lemma provides a property that, along with the last lemma, will show the random
variables in {Xk,e}e∈E of random vector Xk are negatively correlated (see (5.40)) for each k ∈ I.

Lemma 5.19. Consider the context of the statement of Lemma 5.18. Let F ⊆ E. Then E
[∏

e∈F Xk,e

]
≤
∏
e∈F xe

for each k ∈ I.

Proof. The proof is again by induction on k. Denote Yk :=
∏
e∈F Xk,e for each k ∈ I.

By hypothesis, E[X0] = x, and so E[Y0] =
∏
e∈F xe. Suppose k ≥ 1 and E[Yk−1] ≤

∏
e∈F xe. Also,

set X+
k−1 := { z ∈ Im(Xk−1) : P(Xk−1 = z) > 0}. Then, by the law of total expectation (see (5.28) of

Proposition 5.7),
E[Yk] =

∑
z∈X+

k−1

E[Yk |Xk−1 = z]P(Xk−1 = z) , (5.55)

so we look at E[Yk |Xk−1 = z]. In this k-th elementary operation, the random variable Xk−1 is a constant
z ∈ Im(Xk−1), and denote by i, j the edges from Line 2. Then exactly one of three possibilities must happen:
neither i nor j are in F , i.e., |{i, j} ∩ F | = 0; either i or j are in F , i.e., |{i, j} ∩ F | = 1; both i and j are in
F , i.e., |{i, j} ∩ F | = 2. Set S := |{i, j} ∩ F |. Note that S is a random variable. Then, by the law of total
expectation ((5.29) of Proposition 5.7), for each z ∈ X+

k−1 we have

E[Yk |Xk−1 = z] =

2∑
s=0

E[Yk |S = s , Xk−1 = z]P(S = s |Xk−1 = z) . (5.56)

Moreover, note that for each e ∈ E, s ∈ {0, 1, 2}, z ∈ Im(Xk−1), and z′ ∈ Im(Xk), given the event
Xk−1 = z, the events described by the predicates Xk,e = z′e and S = s are conditionally independent
(see (5.12)) since F is just an arbitrary chosen subset of E whose knowledge of value S, how many edges of
{i, j} lie in F , does not alter the probability of Xk,e = z′e. Thus, for each e ∈ E and s ∈ {0, 1, 2}, we have
from (5.24) that

E[Xk,e |S = s , Xk−1 = z] =
∑

z′∈Im(Xk,e)

z′e P(Xk,e = z′e |S = s , Xk−1 = z)

=
∑

z′∈Im(Xk,e)

z′e P(Xk,e = z′e |Xk−1 = z)

= E[Xk,e |Xk−1 = z] .

(5.57)

Now we analyze the expectation in the RHS of (5.56) for each possible value of S. Suppose S = 0. Then
Xk,e = Xk−1,e for each e ∈ E, and so Yk =

∏
e∈F ze if Xk−1 = z ∈ Im(Xk−1). Thus,

E[Yk |S = 0 , Xk−1 = z] =
∏
e∈F

ze . (5.58)

Suppose S = 1. Also, let f be an edge in {i, j} ∩ F . Then Yk =
∏
e∈F Xk,e = Xk,f

∏
e∈F\{f}Xk−1,e, and

so Yk = Xk,f

∏
e∈F\{f} ze if Xk−1 = z ∈ Im(Xk−1). Hence,

E[Yk |S = 1 , Xk−1 = z] = E[Xk,f |S = 1 , Xk−1 = z]
∏

e∈F\{f}

ze = E[Xk,f |Xk−1 = z]
∏

e∈F\{f}

ze

= zf
∏

e∈F\{f}

ze =
∏
e∈F

ze ,
(5.59)

43

where the second equality holds by (5.57), and the third equality holds by Lemma 5.18.
Suppose S = 2. Then Yk =

∏
e∈F Xk,e = Xk,iXk,j

∏
e∈F\{i,j}Xk−1,e, and so Yk = Xk,iXk,j

∏
e∈F\{i,j} ze

if Xk−1 = z ∈ Im(Xk−1). Thus,

E[Yk |S = 2 , Xk−1 = z] = E[Xk,iXk,j |S = 2 , Xk−1 = z]
∏

e∈F\{i,j}

ze . (5.60)

Note that Xk,iXk,j = 1
4 ((Xk,i + Xk,j)

2 − (Xk,i − Xk,j)
2). Also, recall the analysis we have made for an

arbitrary elementary operation on x as in (5.51) involving edges i and j. There, after the elementary
operation, we have a point x′ as in (5.52) where either x′i + x′j = (xi − µp) + (xj + µp) = xi + xj or
x′i + x′j = (xi + µq) + (xj − µq) = xi + xj . Therefore, Xk,i +Xk,j = Xk−1,i +Xk−1,j , and then

E
[
(Xk,i +Xk,j)

2 |S = 2 , Xk−1 = z
]

= E
[
(Xk−1,i +Xk−1,j)

2 |S = 2 , Xk−1 = z
]

= (zi + zj)
2 .

On the other hand, set Z := (Xk,i −Xk,j)
2. From item (v) of Proposition 5.6, if we consider X = Z and

Y = 1, we have E[Z · 1]2 ≤ E[Z2]E[1], i.e., E[Z]2 ≤ E[Z2]. Thus,

E
[
(Xk,i −Xk,j)

2 |S = 2 , Xk−1 = z
]
≥ (E[Xk,i −Xk,j |S = 2 , Xk−1 = z])2

= (E[Xk,i |S = 2 , Xk−1 = z]− E[Xk,j |S = 2 , Xk−1 = z])
2

= (E[Xk,i |Xk−1 = z]− E[Xk,j |Xk−1 = z])
2

= (zi − zj)2 ,

where the second equality holds by (5.57), and the last equality holds by Lemma 5.18. Hence,

E[Xk,iXk,j |S = 2 , Xk−1 = z] =
1

4

(
E
[
(Xk,i +Xk,j)

2 |S = 2 , Xk−1 = z
]

−E
[
(Xk,i −Xk,j)

2 |S = 2 , Xk−1 = z
])

≤ 1

4
((zi + zj)

2 − (zi − zj)2)

= zizj ,

and so
E[Yk |S = 2 , Xk−1 = z] ≤

∏
e∈F

ze . (5.61)

From (5.58), (5.59), and (5.61) in (5.56) we have that E[Yk |Xk−1 = z] ≤
∏
e∈F ze. Thus, from (5.55) we

have that

E[Yk] ≤
∑

z∈X+
k−1

∏
e∈F

ze P(Xk−1 = z) =
∑

z∈X+
k−1

E[Yk−1 |Xk−1 = z]P(Xk−1 = z) = E[Yk−1] ≤
∏
e∈F

xe ,

where last equality holds by the law of total expectation (see (5.28) of Proposition 5.7), and last inequality
holds by induction hypothesis.

Finally, we use the last two lemmas to prove the correctness of RSR.

Theorem 5.20 (Correctness of Randomized Swap Rounding). Consider the context of the statement of
Lemma 5.18. Then the randomized swap rounding samples a spanning tree of G using the probability space
(Ω,P) that, for each k ∈ I, satisfies

E[Xk] = x , and (5.62)

E

[∏
e∈S

Xk,e

]
≤
∏
e∈S

xe for each S ⊆ E . (5.63)

In particular, the random variables in {Xk,e}e∈E are negatively correlated for each k ∈ I.

44

Proof. First, we check that the algorithm indeed returns a spanning tree of G. Suppose x =
∑r
`=1 λ`1E(T`) as

in Line 1. The algorithm returns an object T that starts being the spanning tree T1. After this initialization,
T is updated r − 1 times by successive calls of Merge (see Algorithm 5.2). There, after each iteration of
loop in Line 3, both T1 and T2 are spanning trees of G by construction of edges i and j in Line 2. Moreover,
Merge returns T1. Thus, if Merge is called, it always updates T to become again a spanning tree of G.

Then (5.62) and (5.63) follow directly from Lemma 5.18 and Lemma 5.19, respectively. In addition, from
(5.62), we have that E[Xk,e] = xe for each k ∈ I and e ∈ E. Thus, with (5.63), it follows that the random
variables in {Xk,e}e∈E are negatively correlated for each k ∈ I.

To finish the section we remark on the importance of the last result for the ApproxATSP (see Algorithm 3.1),
namely to perform Line 2. Consider the context of the statement of Lemma 5.18. First, note that the random
variables in {Xt,e}e∈E are 0-1 random variables since RSR always returns an incidence vector of a spanning
tree of G. Then, from (5.62), we have P(Xt,e = 1) = xe for each e ∈ E. Second, we have that the random
variables in {Xt,e}e∈E are negatively correlated. These two properties about the probability space (Ω,P) are
the ones we require in Theorem 5.22 from a randomized algorithm for sampling a spanning tree, and then
these properties will help us to prove in Section 5.6 that we can find in polynomial time and using RSR a
spanning tree that is (α, s)-thin for desired values of α and s.

5.4 Sampling Random Spanning Tree of Gz∗

Let D,x∗, z∗, Gz∗ be as in Definition 3.2. Recall the goal of this chapter: show we can find a certain spanning
tree of Gz∗ , as in Line 2 of ApproxATSP, in polynomial time. For that we will use the randomized swap
rounding (RSR), presented in Section 5.3, that samples spanning trees with a probability space satisfying
some desired properties; these properties are detailed in the statement of Theorem 5.22. We will run RSR
with Gz∗ and z∗ as input (see Algorithm 5.1); so in Lemma 5.21 we show z∗ belongs to the spanning tree
polytope of Gz∗ . We will use the following characterization of the spanning tree polytope of a graph. For a
graph G = (V,E), we have that Psptree(G) is the polytope determined by the following system of inequalities
(see [16, Corollary 50.7c.]):

z ≥ 0 , (5.64a)

1
T
E[U]z ≤ |U | − 1 for each ∅ 6= U (V , (5.64b)

1
T
Ez = |V | − 1 . (5.64c)

Lemma 5.21. Let D, x∗, z∗, Gz∗ be as in Definition 3.2. Then z∗ ∈ Psptree(Gz∗).

Proof. Consider the characterization of Psptree(Gz∗) given by the system of inequalities in (5.64) for the
graph Gz∗ . Note that by (5.64c), we do not need to consider U = V in (5.64b). By definition of z∗ in (3.2)
and as x∗ ≥ 0 by (3.1d), we have that z∗ satisfies (5.64a).

Now let U be a nonempty and proper subset of V , and set n := |V |. On the one hand, 1T
E[U]z

∗ ≤ 1
T
A[U]x

∗

by item (iii) of Proposition 3.3. On the other hand, we have

|U | =
∑
v∈U

1
T
δ out
D (v)x

∗ = 1
T
A[U]x

∗ + 1
T
δ out
D (U)x

∗ ≥ 1
T
A[U]x

∗ + 1 ,

where the first equality holds by (3.1c), and the last inequality holds by (3.1b); i.e., 1T
A[U]x

∗ ≤ |U | − 1. Hence,
1
T
E[U]z

∗ ≤ |U | − 1 and z∗ satisfies (5.64b).
Finally, by item (iii) of Proposition 3.3 for U = V , we have

1
T
Ez
∗ =

(
1− 1

n

)
1
T
Ax
∗ =

(
1− 1

n

)∑
v∈V

1
T
δ out
D (v)x

∗ =

(
1− 1

n

)
n = n− 1 ,

where the third equation holds by (3.1c); i.e., z∗ satisfies (5.64c). Therefore, z∗ satisfies (5.64), and so
z∗ ∈ Psptree(Gz∗).

45

In the next result and mainly in Section 5.6, we will be dealing with probability spaces of the form
P = (T (G),P), where T (G) is the set of spanning trees of a graph G. Also, it will be of particular interest to
compute the probability of events that involve an edge, or a subset of edges, of a graph G being in a spanning
tree sampled from (T (G),P). For instance, in Theorem 5.22, we want to compute the probability of events of
the form {T ∈ T (G) : e ∈ E(T)} for a given edge e of a graph G. Also, in Lemma 5.25, we want to compute
the probability of events of the form {T ∈ T (G) : |E(T) ∩ δ(U)| > k} for a graph G, a subset U of V (G),
and a k ∈ R+. However, as one can see by the statements of these two results, we will not deal directly with
such events. We define random variables to help us represent these events (such use of a random variable we
have already antecipated when we define random variable and its distribution in Section 5.1).

Let G = (V,E, ψ) be a graph, and let P = (T ,P) be a probability space where T := T (G). Define the 0-1
random variables

Xe : T ∈ T 7→ [e ∈ E(T)] for each e ∈ E , (5.65)

with respect to G and P . Then in Theorem 5.22, for instance, we represent the event {T ∈ T (G) : e ∈ E(T)},
for an edge e ∈ E, by the predicate Xe = 1 so that P(Xe = 1) = P({T ∈ T (G) : e ∈ E(T)}). Sometimes, one
may even encounter the predicate e ∈ E(T), where T is said to be a random spanning tree of G, to indicate
this same event.

Theorem 5.22. Let D, c, z∗, Gz∗ be as in Definition 3.2. Then there is a randomized polynomial-time
algorithm that samples a random spanning tree from a probability space (T ,P), where T := T (Gz∗), that
satisfies what follows. Let {Xe}e∈E be random variables defined as in (5.65) with respect to Gz∗ and (T ,P).
Then P(Xe = 1) = z∗e for each e ∈ E, and the random variables in {Xe}e∈E are negatively correlated.

Proof. Note that for each e ∈ E we have P(Xe = 1) = E[Xe] since Xe is a 0-1 random variable.
By Lemma 5.21, we have z∗ in Psptree(Gz∗). Then, by Theorem 5.20, T := SwapRound(Gz∗ , z

∗) is a
random spanning tree of Gz∗ such that E[Xe] = z∗e for each e ∈ E and the random variables in {Xe}e∈E are
negatively correlated.

5.5 Karger’s Bound on the Number of α-Minimum Cuts
In this section, we present a result due to Karger [14]. He developed a simple and elegant algorithm, the
Contraction Algorithm, to solve the problem of finding a minimum cut in a graph with edge weights. As
a consequence, with an algorithm that is a slight modification of the Contraction Algorithm, he found a fact
about the combinatorial structure of cuts in a graph, namely an upper bound on the number of cuts within a
certain factor of the weight of a minimum cut. We will present the modified algorithm (Algorithm 5.3) and
then the bound in Theorem 5.24.

We introduce the following definitions. Let G = (V,E, ψ) be a graph. A function w : E → R+ is called
a (nonnegative) “weight” function on the edges of G so that we = w(e) is called the weight of an edge
e ∈ E, and 1

T
Fw is called the weight of a subset of edges F ⊆ E. A subset F of E is a cut (of G) if there

exists S ⊆ V such that F = δ(S). If ∅ 6= S (V , then δ(S) is a nontrivial cut (of G). We will not consider
the cuts δ(∅) and δ(V), so from now on, by a cut we mean a nontrivial cut. Also, note that ∅ is a nontrivial
cut if and only if G is disconnected; so, since we will consider only connected graphs, ∅ will not be a cut. A
minimum cut of G is a cut of G of minimum weight. A half-integer is a number α such that 2α is an
integer. We want the following:

Consider a connected graph G with no loops and n := |V (G)| ≥ 2, a weight function w on the
edges of G, and a half-integer α ≥ 1. Also, denote by c ≥ 0 the weight of a minimum cut of G.
Then we want a polynomial function of n which upper bounds the number of cuts with weight
at most α c.

(5.66)

We will create a notation for these special cuts. We say that a cut with weight α ∈ R+ times the weight
of a minimum cut is an α-minimum cut. Moreover, it is worth remarking on the assumptions made for
the graph in (5.66); these are the assumptions of Theorem 5.24. Karger showed the bound we present in
Theorem 5.24 within the context of the minimum cut problem. In this problem, if the graph is disconnected,
then finding a solution is simple: the empty set is always a minimum cut of zero weight, and one can check

46

if the graph is disconnected with a depth-first search, for instance. Thus, Karger supposes the graph is
connected. Also, since loops of a graph do not belong to any cut, he ignores them. Finally, he assumes the
graph has at least two vertices; otherwise, there will be no cut in the graph.

But why do we care about this bound? Theorem 5.24 enables one to group cuts according to ranges of
weight, and then to provide a polynomial upper bound for the number of cuts in each such interval. By “to
group cuts according to ranges of weight”, we mean, given an interval of nonnegative reals, open or closed,
consider all cuts whose weight lies in this interval. We use precisely this idea in Theorem 5.26, one of the
theorems that guarantees, with high probability, we can find a desired tree in Line 2 of our main algorithm,
Algorithm 3.1.

To find such upper bound, we will use the following idea. Let G be a graph, and denote by F1, . . . , Fk, for
some k ∈ N, the cuts in G whose number we want to bound. Suppose we have a randomized algorithm that
samples cuts of G. Let (Ω,P) be the probability space used by this algorithm, where Ω is the set of cuts of G.
Also, suppose this algorithm samples each cut Fi, where i ∈ [k], with probability at least p > 0. Then for the
probability of sampling a cut Fi, where i ∈ [k], we have by (5.3) that

P({F1, . . . , Fk}) =
∑
i∈[k]

P(Fi) ≥
∑
i∈[k]

p = kp .

On the other hand,

P({F1, . . . , Fk}) =
∑
i∈[k]

P(Fi) ≤ 1 ,

where the inequality holds by (5.1) and (5.2). So kp ≤ 1, whence k ≤ 1/p. Thus,

If we have a randomized algorithm that samples each of the cuts, whose number we want to
bound, with positive probability, and we have a positive lower bound for this probability,
then we will have an upper bound for the number of these cuts.

(5.67)

We will apply this idea (5.67) with the following Algorithm 5.3 in the proof of Theorem 5.24. A crucial
graph operation employed by both this algorithm and the Contraction Algorithm is edge contraction. We
start by defining this operation. Let G = (V,E, ψ) be a graph with no loops, and let w : E → R+ be a weight
function. Let e ∈ E be an edge with ψ(e) = uv for some u, v ∈ V . Contracting the edge e means creating
a new graph, denoted by G/e, that is equal to G except for three changes: the edges between u and v are
removed; the vertices u, v are replaced by a new vertex z, not in V ; the set of edges incident to either u or v
becomes the set of edges incident to z. Thus, note that after the contraction of e the resulting graph can have
parallel edges but no loops. More precisely, the graph G/e that we denote by G′ = (V ′, E′, ψ′) is defined by

V ′ := V \ {u, v} ∪ {z} with z /∈ V , (5.68)
E′ := E[V \ {u, v}] ∪ δG({u, v}) , (5.69)

and

ψ′(f) :=

{
ψ(f) for each f ∈ E[V \ {u, v}] ,
yz for each f ∈ δG({u, v}) s.t. ψ(f) = xy with x ∈ {u, v} and y ∈ V \ {u, v} .

(5.70)

Note that the edge set of G/e is a subset of the edge set of G. Hence, we can compute the weight of any edge
or subset of edges of G/e using the weight function w.

Now we describe the algorithm. Given a connected graph G with no loops and at least two vertices, a
weight function w on the edges of G, and a half-integer α ≥ 1, the algorithm is divided into two parts. First,
it randomly contracts edges of G until G has exactly 2α vertices (actually, note that |V (G)| can be less than
2α; this special case we treat in the proof of Theorem 5.24, and it will have the same bound for the case we
are analyzing here). Denote the resulting graph after these contractions by G′. Then the algorithm samples
uniformly at random a nonempty and proper subset S of vertices of V (G′). That is, since G′ has 2α vertices,

47

it has 22α − 2 nonempty and proper subsets of vertices, and so each such subset is selected with probability
1/(22α − 2). Finally, it outputs the set δ(S). The compact description is as follows.

Algorithm 5.3: SampleαMinimumCuts(G,w, α)
Input:

(i) a connected graph G = (V,E, ψ) with no loops and at least two vertices,
(ii) a weight function w : E → R+, and
(iii) a half-integer α ≥ 1.

Output: A cut of G.

1. while G has more than 2α vertices do
2. Sample an edge e with probability proportional to the weight of e
3. G← G/e

4. Sample uniformly at random a proper and nonempty subset S of V (G)
5. return δ(S)

The next lemma reveals three properties about edge contraction that are crucial for the correctness of
Algorithm 5.3 and for the proof of Theorem 5.24. item (i) is used to prove the other two results. items (ii)
and (iii) will be used in the proof of Theorem 5.24. item (ii) gives a necessary and sufficient condition for
a cut to “survive” an edge contraction, from which we derive the condition a cut must satisfy in the first
part of the algorithm, the part with edge contractions, to have a chance of being sampled in the second
part. item (iii) justifies a lower bound for the weight of a minimum cut in any graph of the first part of the
algorithm, which ultimately helps us find a lower bound for the probability that a cut “survives” the first part
of the algorithm. Moreover, item (iii) guarantees that the output of Algorithm 5.3 with input G is always a
cut of G.

Lemma 5.23 (Cut Preservation). Let G = (V,E, ψ) be a graph with no loops, and let e ∈ E be an edge
with ψ(e) = uv for some u, v ∈ V . Denote by G′ = (V ′, E′, ψ′) the graph G/e, and denote by z the vertex,
not in V , that replaces u, v after the contraction of e in G (see (5.68)). Then we have the following:

(i) Let S be any subset of V that contains u and v. Also, set S′ := (S\{u, v})∪{z}, i.e., S = (S′\{z})∪{u, v}.
Then δG(S) = δG′(S

′). Moreover, we have δG
(
S
)

= δG′
(
S′
)
.

(Any subset S of vertices of G that either has both ends of the edge to be contracted or none will have
its cut δG(S) preserved after the edge contraction.)

(ii) Let F ⊆ E be a cut of G. Then F is a cut of G/e if and only if e /∈ F .
(Necessary and sufficient condition for a cut to “survive” an edge contraction.)

(iii) Let F ⊆ E′ be a cut of G′. Then F is a cut of G.

(Every cut of the contracted graph is a cut of the original graph.)

Proof. (i) Let f ∈ E. Then

f ∈ δG(S)⇔ ψ(f) = xy s.t. x ∈ S and y ∈ V \ S
⇔ (ψ(f) = xy s.t. x ∈ {u, v} and y ∈ V \ S) or (ψ(f) = xy s.t. x ∈ S \ {u, v} and y ∈ V \ S)
⇔ (ψ′(f) = zy s.t. y ∈ V \ S) or (ψ′(f) = xy s.t. x ∈ S \ {u, v} and y ∈ V \ S)
⇔ (ψ′(f) = zy s.t. y ∈ V ′ \ S′) or (ψ′(f) = xy s.t. x ∈ S′ \ {z} and y ∈ V ′ \ S′)
⇔ ψ′(f) = xy s.t. x ∈ S′ and y ∈ V ′ \ S′

⇔ f ∈ δG′(S′) ,

where the third equivalence holds by definition of ψ′ (see (5.70)), and the fourth equivalence holds by defini-
tion of V , V ′, S, and S′. Moreover, since δG(S) = δG

(
S
)
and δG′(S′) = δG′

(
S′
)
, we have δG

(
S
)

= δG′
(
S′
)
.

(ii) (⇒) Since e /∈ E′ and F ⊆ E′, we have e /∈ F .
(⇐) Since F is a cut of G, there exists a subset S of V such that δG(S) = F . Since e /∈ F , we have either

e ∈ E[S] or E[S]. Suppose, without loss of generality, e ∈ E[S], and set S′ := (S \ {u, v}) ∪ {z}. Then, by

48

item (i), δG(S) = δG′(S
′), i.e., F is a cut of G′.

(iii) Since F is a cut of G′, there exists a subset S′ of V ′ such that δG′(S′) = F . Then either z ∈ S′ or
z ∈ S′. Suppose, without loss of generality, z ∈ S′, and set S := (S′ \ {z}) ∪ {u, v}. Then, by item (i),
δG′(S

′) = δG(S), i.e., F is a cut of G.

Theorem 5.24 (Bound on the number of α-minimum cuts, [14, Theorem 6.2]). Let G = (V,E, ψ) be a
connected graph with no loops and n := |V | ≥ 2, and let w : E → R+ be a weight function. Let α ≥ 1 be a
half-integer, i.e., 2α ∈ Z. Also, set c to be the weight of a minimum cut. Then the number of α-minimum
cuts in G is at most n2α. Moreover, if α < n/2 this number is at most 22α−1

(
n
2α

)
, which is less than n2α.

Proof. We divide into two cases. First, suppose α ≥ n/2. Then the desired bound follows immediately from
a bound on the total number of cuts in G. Indeed, there exist 2n − 2 nonempty and proper subsets of V , and
each cut is determined by at least two subsets of vertices. So there exist at most 2n−1 − 1 cuts in G (actually,
since G is connected, one can show each cut is determined by exactly two subsets of vertices, and so this
bound is exact). Also, n ≥ 2 and n− 1 < n ≤ 2α. Hence, 2n−1 − 1 < n2α.

Now suppose α < n/2. We apply the idea (5.67) with the algorithm Algorithm 5.3. So first, we show

Algorithm 5.3 samples each α-minimum cut with positive probability. (5.71)

Recall that Algorithm 5.3 has two parts: first, the algorithm has a sequence of edge contractions until the
graph has 2α vertices; then the algorithm makes a uniformly random sampling of a cut of the resulting graph
after the edge contractions. Then, as long as a cut “survives” the first part, it has a positive probability of
being sampled. We show that the probability of an α-minimum cut “surviving” the first part is positive.

Let F ⊆ E be a cut of G with weight at most α c. By item (ii) of Lemma 5.23, a cut “survives” an edge
contraction of an edge e if and only if e /∈ F . So F will “survive” the first part of the algorithm if it “survives”
after each edge contraction that happens. Since each edge contraction decreases by one the number of vertices,
the input graph has n vertices, and after the edge contractions there are exactly 2α vertices, there will be
n − 2α edge contractions. So denote the edges to be contracted by e1, . . . , en−2α. We want to determine
P
(
∧i∈[n−2α](ei /∈ F)

)
. By Proposition 5.2, we have

P
(
∧i∈[n−2α](ei /∈ F)

)
= P(e1 /∈ F) · P(e2 /∈ F | e1 /∈ F) · · ·P

(
en−2α /∈ F | ∧i∈[n−2α−1] (ei /∈ F)

)
.

Now let us analyze an arbitrary edge contraction in the algorithm. Consider an arbitrary iteration in the loop
of Line 1 of Algorithm 5.3 with input G, and denote the current graph by G′. Also, suppose G′ has r vertices,
where 2α < r ≤ n, and that the cut F is intact, i.e., no edge of F was contracted so far. By item (iii) of
Lemma 5.23, every cut of G′ is a cut of G, and then the weight of a minimum cut of G′ is at least c. Hence,
the total weight of G′ is

1

2

∑
v∈V (G′)

1
T
δG′ (v)w ≥

1

2

∑
v∈V (G′)

c =
cr

2
.

On the other hand, the weight of F is at most αc. Then the probability of choosing an edge of F to contract
in this iteration is at most (αc)/(rc/2) = 2α/r, and so the probability of not choosing an edge of F is at
least 1− 2α/r. Thus,

P
(
∧i∈[n−2α](ei /∈ F)

)
≥
(

1− 2α

n

)(
1− 2α

n− 1

)
· · ·
(

1− 2α

2α+ 1

)
=

(
n− 2α

n

)(
n− 2α− 1

n− 1

)
· · ·
(

1

2α+ 1

)
=

(n− 2α)!(2α)!

n!
=

(
n

2α

)−1

,

which is a positive real, and so we have (5.71).
Now we complete the analysis and give a positive lower bound for the probability of F being sampled by

the algorithm. Given that the cut F “survives” the first part, there exist at least two subsets that determine

49

F out of a total of 22α − 2 proper and nonempty subsets of the graph resulting from the first part (actually,
one can show that there are exactly two since the graph is connected). Denote by S the subset sampled in
the second part. Then the probability that the cut F is returned by the algorithm is

P(F) = P
(
∧i∈[n−2α](ei /∈ F)

)
P(δ(S) = F) ≥

(
n

2α

)−1
2

22α − 2
=

(
n

2α

)−1
1

22α−1
=

(n− 2α)!(2α)!

n!
· 1

22α−1

=
(2α) (2α− 1) · · · 2 · 1

n (n− 1) (n− 2) · · · (n− 2α− 1)
· 1

22α−1
=

1

n
· 2α

2(n− 1)
· 2α− 1

2(n− 2)
· · · 2

2(n− 2α+ 1)
≥ 1

n2α
=: p ,

where the last inequality holds since 2α is an integer greater than or equal to 2, and so we have in the LHS a
product of 2α factors, each one greater than or equal to 1/n.

In other words, an arbitrary cut, of those whose number we want to bound, is sampled using Algorithm 5.3
with probability at least p > 0. Finally, we complete the use of idea (5.67). The number of α-minimum cuts
is at most 1/p = n2α.

5.6 Finding an (α, 2)-Thin Tree of Gz∗ With High Probability
Let D, c, z∗, Gz∗ be as in Definition 3.2, and let α be a positive real. Theorem 5.22 presents a randomized
polynomial-time algorithm A that samples spanning trees of Gz∗ using a probability space with certain
properties. We show that, by using such an algorithm, one can find in polynomial time a spanning tree of
Gz∗ that is (α, 2)-thin (see Definition 3.2) with high probability.

From Definition 3.2, the spanning tree we search for must satisfy two properties: it must be α-thin with
respect to z∗ with high probability; it must have cost, with cost function c∗ as in (3.3), of at most 2 OPTHK

with high probability. The first requirement is satisfied by directly using A since Theorem 5.26 shows that
any spanning tree of Gz∗ sampled by A is α-thin with respect to z∗ with high probability, namely at least
1−1/(n−1). The second requirement demands a bit more. First, Theorem 5.27 shows that any spanning tree
of Gz∗ sampled using A has cost at most 2 OPTHK with probability at least 1/2. Then Corollary 5.28 shows
that if we sample d2 lnne spanning trees using A, and we pick one with minimum cost, this chosen tree will
have the desired cost with high probability, namely at least 1− 1/n > 1− 1/(n− 1). Finally, Theorem 5.29
joins Theorem 5.26 and Corollary 5.28 to show that indeed we can find a desired spanning tree of Gz∗ with
high probability, namely greater than 1− 2/(n− 1).

We start with the first requirement. Denote by T the random spanning tree of Gz∗ we will sample.
Roughly, for T to be α-thin with respect to z∗, we need no cut of Gz∗ to contain too many edges of T . But
how many edges is too much? Well, by Definition 3.1, for any cut, T can have at most as many edges as
α times the sum of the entries of z∗ that are edges of the cut. To prove T satisfies this requirement with high
probability, we first show, in Lemma 5.25, a bound for the probability that T violates the α-thiness property
for an arbitrarily chosen cut. Then, in Theorem 5.26, we bound the probability that there exists a cut of Gz∗
for which T violates the α-thiness property.

Finally, we remark on the events we will analyze. Since T is a random spanning tree, to describe events
that involve its edges we will use the random variables {Xe}e∈E defined as in (5.65) with respect to Gz∗ and a
probability space to be introduced. Thus, in an event description involving |E(T)∩δ(U)| (from Definition 3.1),
for a subset U of V , such term will be replaced by the sum

∑
e∈δ(U)Xe. Moreover, we take advantage of the

family notation, described in [13, Section 9], for instance, where {Xe}e∈E is the function X : E → Xe, and so
we write

∑
e∈δ(U)Xe = 1

T
δ(U)X.

Lemma 5.25. Let D, c, z∗, Gz∗ be as in Definition 3.2. Suppose Gz∗ has n ≥ 3 vertices. Let (T ,P) be the
probability space as in the statement of Theorem 5.22 from which one can sample spanning trees of Gz∗ .
Let {Xe}e∈E be random variables defined as in (5.65) with respect to Gz∗ and (T ,P). Then, for each U a
nonempty and proper subset of V , one has

P
(
1
T
δ(U)X > α1T

δ(U)z
∗
)
≤ n−2.51T

δ(U)z
∗
, (5.72)

where α := 4 lnn/ ln lnn.

50

Proof. Let U be a nonempty and proper subset of V . Since the random variables in {Xe}e∈E are negatively
correlated by Theorem 5.22, we show there exists a scalar β > 0 such that

P
(
1
T
δ(U)X > α1T

δ(U)z
∗
)

= P
(
1
T
δ(U)X > (1 + β)E

[
1
T
δ(U)X

])
(5.73)

so that we can apply the Chernoff bound of Theorem 5.14 to the RHS of (5.73). Let e ∈ E. Since Xe is a 0-1
random variable, we have E(Xe) = P(Xe). Also, P(Xe = 1) = z∗e by Theorem 5.22. Thus, E[Xe] = z∗e , and
so, by linearity of expectation (see item (ii) of Proposition 5.6),

E
[
1
T
δ(U)X

]
=

∑
f∈δ(U)

E[Xf] =
∑

f∈δ(U)

z∗f = 1
T
δ(U)z

∗ . (5.74)

As α > 1 for n ≥ 3, and by (5.74), set β := α− 1 > 0 so that (1 + β)E
[
1
T
δ(U)X

]
= α1T

δ(U)z
∗, and then (5.73)

follows. Now, as we said, we apply Theorem 5.14 to the RHS of (5.73), and we obtain

P
(
1
T
δ(U)X > α1T

δ(U)z
∗
)
≤
(

eβ

(1 + β)1+β

)E[1T
δ(U)X]

≤
(

e1+β

(1 + β)1+β

)E[1T
δ(U)X]

=

(
e

1 + β

)(1+β)E[1T
δ(U)X]

=

(
e

1 + β

)α1T
δ(U)z

∗

(5.75)

=
[(e
α

)α]1T
δ(U)z

∗

.

Since α = 4 lnn/ ln lnn, we have

ln
[(e
α

)α]
=

4 lnn

ln lnn
ln

(
e

ln lnn

4 lnn

)
=

4 lnn

ln lnn
[ln e/4− ln lnn+ ln ln lnn]

= 4 lnn

[
ln e/4

ln lnn
− 1 +

ln ln lnn

ln lnn

]
≤ −4 lnn

(
1− ln ln lnn

ln lnn

)
since e < 4 and ln lnn > 0 for n ≥ 3 (5.76)

≤ −4

(
1− 1

e

)
lnn since

ln ln lnn

ln lnn
≤ 1

e
for each n ≥ 3

≤ −2.5 lnn

= lnn−2.5 ,

As for each x, y ∈ R++ we have that lnx ≤ ln y implies x ≤ y, it follows from (5.76) and 1
T
δ(U)z

∗ > 0 that

[(e/α)
α

]
1
T
δ(U)z

∗

≤ n−2.51T
δ(U)z

∗
. Then, by (5.75),

P
(
1
T
δ(U)X > α1T

δ(U)z
∗
)
≤ n−2.51T

δ(U)z
∗
.

Theorem 5.26. Let D, c, x∗, z∗, Gz∗ be as in Definition 3.2. Suppose Gz∗ has n ≥ 5 vertices. Let (T ,P) be
the probability space as in the statement of Theorem 5.22 from which one can sample spanning trees of Gz∗ .
Let {Xe}e∈E be random variables defined as in (5.65) with respect to Gz∗ and (T ,P). Moreover, denote by C
the set of nontrivial cuts of Gz∗ . Then

P
(
1
T
FX > α1T

F z
∗ for some F ∈ C

)
≤ 1

n− 1
,

where α := 4 lnn/ ln lnn.

51

Proof. By the union bound (see item (ii) from Proposition 5.1), it follows that

P
(
1
T
FX > α1T

F z
∗ for some F ∈ C

)
≤
∑
F∈C

P
(
1
T
FX > α1T

F z
∗) . (5.77)

The graph Gz∗ is connected by Proposition 3.4. Also, Gz∗ has no loops since D is a complete digraph
(see definitions in Section 2.3), and Gz∗ has more than two vertices. Thus, Gz∗ satisfies the hypotheses of
Theorem 5.24, and then instead of applying directly Lemma 5.25 to the RHS of the last inequality, we use
Theorem 5.24. This result shows that the number of cuts in Gz∗ with weight at most β times the weight of a
minimum cut of Gz∗ is at most n2β for any half-integer β ≥ 1. First, we find the weight of a minimum cut
of Gz∗ with weight function z∗. By item (ii) of Proposition 3.3, for any nonempty and proper subset U of V
we have

1
T
δ(U)z

∗ = 2

(
1− 1

n

)
1
T
δ out
D (U)x

∗ ≥ 2

(
1− 1

n

)
, (5.78)

where the last inequality holds by (3.1b). If U is a singleton, then 1
T
δ out
D (U)x

∗ = 1 by (3.1c), and hence the
inequality in (5.78) is an equality. Then 2(1− 1/n) is the weight of a minimum cut of Gz∗ .

Set Ci := {F ∈ C : 1T
F z
∗ ∈ [(i− 1)(1− 1/n), i(1− 1/n)]} for each i ≥ 3. Note that for each F ∈ C there

is at least one i ≥ 3 such that F ∈ Ci. Moreover, since for each integer i ≥ 2 there are ni cuts in Gz∗ with
weight at most i

2 (2(1− 1/n)) = i(1− 1/n) by Theorem 5.24, we have that |Ci| ≤ ni for each integer i ≥ 3.
Then∑
F∈C

P
(
1
T
FX > α1T

F z
∗) ≤ ∞∑

i=3

∑
F∈Ci

P
(
1
T
FX > α1T

F z
∗) ≤ ∞∑

i=3

∑
F∈Ci

n−2.51T
F z
∗

by Lemma 5.25

≤
∞∑
i=3

∑
F∈Ci

n−2.5(i−1)(1−1/n) =

∞∑
i=3

|Ci|n−2.5(i−1)(1−1/n)

≤
∞∑
i=3

nin−2.5(i−1)(1−1/n) =

∞∑
i=3

n(−1.5i+(2.5i)/n)+(2.5−2.5/n)

≤
∞∑
i=3

n−i+2 =

∞∑
i=1

1

ni
=: S , (5.79)

where the last inequality holds since −1.5i+ (2.5i)/n ≤ −i and 2.5− 2.5/n ≤ 2 for n ≥ 5. Note that S is a
geometric series, a series with the same constant ratio between successive terms; the ratio for the series S is
1/n. Then

S − 1

n
S =

1

n
⇒
(

1− 1

n

)
S =

1

n
⇒ S =

1

n− 1
.

Consider the context of the statement of Theorem 5.26. With the last two results we have shown that a
tree sampled by the algorithm provided by Theorem 5.22 satisfies the first requirement we have established
at the beginning of this section, that is, it is α-thin with respect to z∗ with high probability, namely at
least 1− 1/(n− 1).

Before proceeding with the other results for the second requirement, we want to “justify”, or at least
provide an intuition for, using Karger’s result (Theorem 5.24) in the proof of the last theorem. Suppose that
we had directly applied Lemma 5.25 to the RHS of (5.77); then we would have had∑

F∈C
P
(
1
T
FX > α1T

F z
∗) =

∑
F∈C

n−2.51T
F z
∗
.

From the proof of Theorem 5.26, recall that the weight of a minimum cut of Gz∗ is 2(1− 1/n), i.e., among
all non-trivial cuts of Gz∗ at least one has the weight 2(1 − 1/n), and all others have at least this weight.
Moreover, note that there are 2n − 2 nonempty and proper subsets of V , and one can show that exactly each
two of them determine a cut of Gz∗ since this graph is connected; as a consequence, there are 2n−1 − 1 cuts
in Gz∗ . Then a reasonable, or one could say natural, way to develop the last equation would be∑

F∈C
n−2.51T

F z
∗
≤
∑
F∈C

n−5(1−1/n) =
2n−1 − 1

n5(1−1/n)
≥ 2n−2

n5

52

where the last inequality holds as n ≥ 2. So following a very plausible reasoning results in a fraction with an
inconvenient exponential of n in the numerator. Now consider the sequence of equations and inequalities
that end in (5.79). By organizing the cuts in weight ranges with respect to the weight of a minimum cut, we
obtain a dreadful series after the first inequality. However, after the third inequality, as we have gained the
information of the weight range each cut belongs to, we can assign a higher lower bound for the weight of
potentially many cuts than the weight of a minimum cut. Moreover, after the fourth inequality, by Karger’s
result, we have a polynomial function of n bound for the number of cuts in each weight range instead of
an exponential of n. As the proof shows, these last two facts combined are enough to produce a geometric
series whose terms are less than 1 and that converges to 1/(n− 1), a real smaller than 1 that decreases as n
increases.

Now with the next two results we show how to sample, in polynomial time and using the algorithm
provided by Theorem 5.22, a tree that satisfies the second established requirement: it must have cost, with
respect to cost function c∗ as in (3.3), of at most 2 OPTHK with high probability.

Theorem 5.27. Let D, c, x∗, z∗, Gz∗ , c∗, OPTHK be as in Definition 3.2. Suppose Gz∗ has n ≥ 5 vertices.
Let (T ,P) be the probability space as in the statement of Theorem 5.22 from which one can sample spanning
trees of Gz∗ . Let {Xe}e∈E be random variables defined as in (5.65) with respect to Gz∗ and (T ,P). Moreover,
let C : T → R be a random variable such that C(T) := 1

T
E(T)c

∗ for each T ∈ T . Then

P(C > 2 OPTHK) <
1

2
.

Proof. By the equivalent expression for expectation (see (5.15)),

E[C] =
∑
T∈T

C(T)P(T) =
∑
T∈T

∑
e∈E

[e ∈ E(T)] c∗e P(T) =
∑
e∈E

c∗e
∑
T∈T

[e ∈ E(T)]P(T)

(5.3)
=
∑
e∈E

c∗e P({T ∈ T : e ∈ E(T)}) =
∑
e∈E

c∗e P(Xe = 1) .

By Theorem 5.22, P(Xe = 1) = z∗e for each e ∈ E, so it follows

E[C] =
∑

{u,v}∈E

c∗{u,v} z
∗
{u,v}

(3.2)
=

∑
{u,v}∈E

c∗{u,v}
n− 1

n
(x∗uv + x∗vu)

(3.3)
≤ n− 1

n

∑
{u,v}∈E

(cuv x
∗
uv + cvu x

∗
vu)

=
n− 1

n

∑
u,v∈V

(cuv x
∗
uv + cvu x

∗
vu) =

n− 1

n

∑
a∈A

ca x
∗
a < OPTHK ,

where the third equality holds as D is a complete digraph and by item (i) of Proposition 3.3, and the
last inequality holds since x∗ is an optimum solution of the Held-Karp relaxation of (mATSP) determined
by D and c. Then, by Markov’s inequality (see Theorem 5.8),

P(C > 2 OPTHK) ≤ E[C]

2 OPTHK
<

OPTHK

2 OPTHK
=

1

2
.

Corollary 5.28. Let D, c, z∗, Gz∗ be as in Definition 3.2. Suppose Gz∗ has n ≥ 5 vertices. Let (T ,P) be
the probability space as in the statement of Theorem 5.22 from which one can sample spanning trees of Gz∗ .
Let {Xe}e∈E be random variables defined as in (5.65) with respect to Gz∗ and (T ,P). Set k := d2 lnne, and
let T1, . . . , Tk be the result of k independent samplings from (T ,P). Moreover, let T ∗ be a tree among the
k sampled that has minimum cost. Then

P
(
1
T
E(T∗)c

∗ > 2 OPTHK

)
<

1

n
.

53

Proof. Since 1T
E(T∗)c

∗ > 2 OPTHK if and only if 1T
E(Ti)

c∗ > 2 OPTHK for each i ∈ [k], it follows that

P
(
1
T
E(T∗)c

∗ > 2 OPTHK

)
= P

(
1
T
E(Ti)

c∗ > 2 OPTHK for each i ∈ [k]
)

=

k∏
i=1

P
(
1
T
E(Ti)

c∗ > 2 OPTHK

)
by independence of the k samplings

<

(
1

2

)k
by Theorem 5.27

=
1

2d2 lnne <
1

22 lnn
<

1

2log2 n
=

1

n
,

where the last inequality holds since log2 n = lnn
ln 2 < 2 lnn.

Finally, we join the last results to show we can sample a tree that satisfies the two requirements we
established at the beginning of the section.

Theorem 5.29. Consider the context of the statement of Corollary 5.28. Then

P(T ∗ is (α, 2)-thin) > 1− 1

n− 1
− 1

n
> 1− 2

n− 1
,

for α = 4 lnn/ ln lnn.

Proof. Denote by A the event that T ∗ is α-thin, and denote by B the event that 1T
E(T∗)c

∗ ≤ 2 OPTHK. Thus,

P(T ∗ is (α, 2)-thin) = P(A ∩B) = 1− P
(
A ∪B

)
≥ 1− P

(
A
)
− P

(
B
)
> 1− 1

n− 1
− 1

n
> 1− 2

n− 1
,

where the second equality holds by the probability of the complement (see item (iv) of Proposition 5.1), the
first inequality holds by the union bound (see item (ii) from Proposition 5.1), and the second inequality holds
by Theorem 5.26 and Corollary 5.28.

The next result encapsulates Theorem 5.29 so that it can be easily used by the main result of the
monograph, Theorem 3.8.

Theorem 5.30. Let D, c, z∗, Gz∗ be defined as in Definition 3.2. Then there exists a polynomial-time
algorithm that finds a (4 lnn/ ln lnn, 2)-thin tree of Gz∗ with high probability, namely greater than 1−2/(n−1).

Proof. By Theorem 5.22, there is a randomized polynomial-time algorithm that samples spanning trees of
Gz∗ using a finite probability space (T (Gz∗),P). Thus, we use this algorithm to sample d2 lnne spanning
trees of Gz∗ , and we choose a tree T ∗ among them that has minimum cost. Both the running time of the
algorithm used to sample the spanning trees and the number of times we called this algorithm are polynomial
in |V | and |c|, the input size of the algorithm ApproxATSP (see Algorithm 3.1); so this whole process takes
polynomial time. Moreover, by Theorem 5.29, T ∗ is a (4 lnn/ ln lnn, 2)-thin tree of Gz∗ with probability
greater than 1− 2/(n− 1).

54

Chapter 6

The Ellipsoid Method

6.1 The Geometry of Ellipsoids
Throughout this section, we will use V to denote a finite nonempty set.

An ellipsoid in RV is a set of the form AB+ b = {Ax+ b ∈ RV : x ∈ B}, where B is the unit ball in RV ,
for an invertible matrix A ∈ RV×V and a vector b ∈ RV .

The next result gives another representation of ellipsoids that uses quadratic forms generated by positive
definite matrices. Also, for any ellipsoid, it is shown how to transform its representation with the definition
into its representation with quadratic forms and vice-versa.

Proposition 6.1 (Characterization of Ellipsoids). Let E be a subset of RV . Then E is an ellipsoid if and
only if there exists a positive definite matrix M ∈ RV×V and a vector b ∈ RV such that E = E(M, b) :=
{x ∈ RV : (x− b)TM−1(x− b) ≤ 1}. Moreover, if E = AB + b for an invertible matrix A ∈ RV×V and a
vector b ∈ RV , then E = E(AAT, b); and conversely, if E = E(M, b) for a positive definite matrix M ∈ RV×V
and vector b ∈ RV , then E = M1/2B+ b = {M1/2x+ b ∈ RV : x ∈ B}.

Proof. Suppose E is an ellipsoid. Then, by definition, there exists an invertible matrix A ∈ RV×V and a
vector b ∈ RV such that

E = {Ay + b ∈ RV : ‖y‖ ≤ 1} = {x ∈ RV : ‖A−1(x− b)‖ ≤ 1} .

By nonnegativity of norm, for each x ∈ E we have that

‖A−1(x− b)‖ ≤ 1⇔ ‖A−1(x− b)‖2 ≤ 12 ⇔ (A−1(x− b))T(A−1(x− b)) ≤ 1⇔ (x− b)T(AAT)−1(x− b)

Moreover, by Proposition 2.7, the matrix AAT is positive definite. Thus, we have E = E(M, b) for M := AAT.
Conversely, suppose E = E(M, b) for a positive definite matrix M ∈ RV×V and a vector b ∈ RV . Recall

from item (i) of Theorem 2.6 that M = M1/2M1/2 where M1/2 is the unique positive definite square root
of M . Moreover, by item (ii) of Theorem 2.6, M1/2 is invertible, and its inverse is also positive definite. Thus,

E = {x ∈ RV : (x− b)TM−1(x− b) ≤ 1}
= {x ∈ RV : (x− b)TM−1/2M−1/2(x− b) ≤ 1}
= {x ∈ RV : (M−1/2(x− b))TM−1/2(x− b) ≤ 1}
= {x ∈ RV : ‖M−1/2(x− b)‖ ≤ 1}
= {M1/2y + bRV : y ∈ B} .

So by Proposition 6.1, a subset E of RV is an ellipsoid if there exists a positive definite matrix M ∈ RV×V
and a vector b ∈ RV such that E = E(M, b); such vector b is called the center of E.

In the Ellipsoid Method, we will produce a sequence of ellipsoids of decreasing volume. In Theorem 6.4,
we will show how to produce this sequence, and we will show an upper bound for the ratio of the volumes

55

of consecutive ellipsoids. To do that, we define the volume of a measurable subset of RV , and we give an
equivalent way of writing the definition of an ellipsoid that will help us to calculate its volume.

The volume of a measurable subset X of RV , denoted by vol(X), is defined by

vol(X) =

∫
x∈X

dx . (6.1)

An ellipsoid in RV is a set of the form S[B] (see definition of image in Section 2.2) for an invertible
affine transformation S : RV → RV , i.e., an ellipsoid is the image of the unit ball by an invertible affine
transformation. So with the next lemma, we will be able to compute the volume of an ellipsoid as a scalar of
the volume of the unit ball.

Lemma 6.2. Let X be a measurable subset of RV , and let S : x ∈ RV 7→ Ax+ b be an affine transformation
for a matrix A ∈ RV×V and a vector b ∈ R. Then vol(S[X]) = |det(A)| vol(X).

Finally, we introduce another important matrix for our proof of Theorem 6.4, a rotation matrix.

Lemma 6.3. Let x be a vector in RV , and let i ∈ V . Then there exists a matrix R ∈ RV×V , called rotation
matrix, such that

RRT = RTR = I , and (6.2)
Rx = ‖x‖ei , (6.3)

i.e., R is an orthogonal matrix, and it “rotates” x to the multiple vector of ei of equal norm.

Proof. First, we consider the case where x = kei for a real k ≤ 0, i.e., when x is a nonpositive multiple of ei.
Note that

‖x‖ =
√
k2 = |k| = −k . (6.4)

In this case, we have (6.2) and (6.3) for R := −I. Indeed,

(−I)(−I)T = I = (−I)T(−I) and (−I)(kei) = −kIei = −kei
(6.4)
= ‖x‖ei .

Now suppose x 6= kei for each real k ≤ 0. Set y := x+‖x‖ei, and set R := 2 yyT

‖y‖2 − I. Note that y 6= 0 since

x+ ‖x‖ei = 0⇔ xi = −‖x‖ and xj = 0 for each j 6= i⇔ xi = −
√
x2
i and xj = 0 for each j 6= i

⇔ −xi = |xi| and xj = 0 for each j 6= i ⇔ xi ≤ 0 and xj = 0 for each j 6= i

⇔ x = kei for a real k ≤ 0 .

So the matrix R can indeed be defined for such x, and then

RRT = RTR =

(
2 yyT

‖y‖2
− I
)2

=
4‖y‖2yyT

‖y‖4
− 4 yyT

‖y‖2
+ I = I ,

which shows (6.2). Now consider

Rx =
2(x+ ‖x‖ei)(xTx+ ‖x‖eTi x)

‖x+ ‖x‖ei‖2
− x =

2(x+ ‖x‖ei)(‖x‖2 + ‖x‖xi)
‖x+ ‖x‖ei‖2

− x . (6.5)

Set
α := ‖x+ ‖x‖ei‖2 = (x+ ‖x‖ei)T(x+ ‖x‖ei) = 2(‖x‖2 + ‖x‖xi) , (6.6)

and set
z := 2(x+ ‖x‖ei)(‖x‖2 + ‖x‖xi)

(6.6)
= α(x+ ‖x‖ei) . (6.7)

Thus, by rewriting (6.5) with (6.6) and (6.7), we have

Rx =
z

α
− x =

α(x+ ‖x‖ei)
α

− x = ‖x‖ei ,

which shows (6.3).

56

The sequence of ellipsoids produced during the Ellipsoid Method has a property: each ellipsoid of the
sequence, except the first one, is the ellipsoid of minimum volume that contains a certain “ellipsoidal section”
of the previous one in the sequence. We will consider a particular ellipsoidal section that gives rise to one
version of the Ellipsoid Method, the Central-Cut Ellipsoid Method.

More precisely, for an ellipsoid E := E(M, b) in RV , consider a halfspaceH := {x ∈ RV : aTx ≥ aTb} in RV .
Set n := |V |. Note that the center of E is in the hyperplane determined by aTx = aTb. So E is being
“cut” through its center b by the hyperplane determined by aTx = aTb; we call E ∩H a half-ellipsoid. The
ellipsoid E′ of minimum volume that contains the half-ellipsoid E ∩H is the ellipsoid E(M, b) defined by

b := b+
1

n+ 1

Ma√
aTMa

, (6.8a)

M :=
n2

n2 − 1

(
M − 2

n+ 1

MaaTM

aTMa

)
. (6.8b)

The ellipsoid E′ is called the Löwner-John ellipsoid of E ∩ H. To see the derivation of the above
formulas, one can check out Bland, Goldfarb, and Todd [4, Appendix B]. In the next theorem we prove that
indeed E ∩H ⊆ E′, and we give a bound, smaller than one, for the ratio of the volumes of E′ and E. The
proof is inspired in Bertsimas and Tsitsiklis [3, Theorem 8.1].

Theorem 6.4. Let E := E(M, b) be an ellipsoid in RV , and let a be a nonzero vector in RV . Set n := |V |, and
set H := {x ∈ RV : aTx ≥ aTb} to be a halfspace in RV . Moreover, set E′ := E(M, b) to be the Löwner-John
ellipsoid of E ∩H as in (6.8). Then

a) E ∩H ⊆ E′ ,

b) vol(E′)
vol(E) ≤ e

−1/(2(n+1)) < 1 .

Proof. a) First, we consider the particular case where M = I, b = 0, and a = ei for an i ∈ V . So
E0 := E = E(I, 0) which is I1/2B + 0 = B by Proposition 6.1, i.e., E0 is the unit ball in RV . Also,
H0 := H = {x ∈ RV : xi ≥ 0}, and E′0 := E′ = E(I, 0). In other words, we will show that the ellipsoid E

′

0

contains the half of the unit ball in RV whose points have the i coordinate nonnegative. We start by
determining E

′

0. By (6.8), we have

0 = 0 +
1

n+ 1

Iei√
eTi Iei

=
ei

n+ 1
, (6.9)

I =
n2

n2 − 1

(
I − 2

n+ 1

Ieie
T
i I

eTi Iei

)
=

n2

n2 − 1

(
I − 2

n+ 1
eie

T
i

)
. (6.10)

Set u := − 2
n+1ei, and set v := ei. Then, by the Sherman-Morrison formula (see Proposition 2.5), for the

inverse of the second factor in the RHS of (6.10) we have

(I + uvT)−1 = I − uvT

1 + vTu
= I − 1

1− 2
n+1e

T
i ei

(
− 2

n+ 1
ei

)
eTi = I +

n+ 1

n− 1

2

n+ 1
eie

T
i = I +

2

n− 1
eie

T
i ,

and consequently,

I
−1

=
n2 − 1

n2

(
I +

2

n− 1
eie

T
i

)
. (6.11)

Now we find a convenient expression for E′0 to derive the desired property. Since E′0 = E(I, 0) and by (6.9)

57

and (6.11), we have

E′0 =

{
x ∈ RV :

(
x− ei

n+ 1

)T(
n2 − 1

n2

)(
I +

2

n− 1
eie

T
i

)(
x− ei

n+ 1

)
≤ 1

}

=

{
x ∈ RV :

(
n2 − 1

n2

)[(
x− ei

n+ 1

)T(
x− ei

n+ 1

)
+

2

n− 1

(
x− ei

n+ 1

)T(
eie

T
i

)(
x− ei

n+ 1

)]
≤ 1

}

=

{
x ∈ RV :

(
n2 − 1

n2

)[(
xTx− 2xi

n+ 1
+

1

(n+ 1)2

)
+

2

n− 1

(
x2
i −

2xi
n+ 1

+
1

(n+ 1)2

)]
≤ 1

}
=

{
x ∈ RV :

(
n2 − 1

n2

)[
xTx+

2x2
i

n− 1
+

(
− 2xi
n+ 1

+
1

(n+ 1)2

)(
n+ 1

n− 1

)]
≤ 1

}
=

{
x ∈ RV :

(
n2 − 1

n2

)(
xTx+

2xi
n− 1

(xi − 1) +
1

n2 − 1

)
≤ 1

}
=

{
x ∈ RV :

(
n2 − 1

n2

)
xTx+

2(n+ 1)

n2
xi(xi − 1) +

1

n2
≤ 1

}
. (6.12)

Let x ∈ E0∩H0. So x ∈ H0 and xi ≥ 0. Moreover, by xi ≥ 0, the Cauchy-Schwarz inequality, and x ∈ E0 = B,
we have that xi = |eTi x| ≤ ‖ei‖‖x‖ = 1. Thus, xi(xi − 1) ≤ 0. Still by x ∈ E0, we have that xTx ≤ 1. Hence,

n2 − 1

n2
xTx+

2(n+ 1)

n2
xi(xi − 1) +

1

n2
≤ n2 − 1

n2
+

1

n2
= 1 ,

i.e., x ∈ E′0 by the description of E′0 in (6.12). Therefore, E0 ∩H0 ⊆ E′0.
Now we consider the general case, as in the statement, where M , b, and a are chosen arbitrarily. We

will show an invertible affine transformation S : RV → RV where (see definitions of image and preimage in
Section 2.2)

S[E] = E0, S[H] = H0 and S[E′] = E′0 . (6.13)

Since S is an injective function, by item (i) of Proposition 2.1, we have

S[E] ∩ S[H] ⊆ S[E′]⇒ S[E ∩H] ⊆ S[E′]⇒ S−1[S[E ∩H]] ⊆ S−1[S[E′]]⇒ E ∩H ⊆ E′ , (6.14)

where the last implication holds by item (ii) of Proposition 2.1 since S is injective. Finally, since E0∩H0 ⊆ E′0
and by (6.13) and (6.14), we will have E ∩H ⊆ E′. So we build the function S as follows.

Let T : x ∈ RV 7→M−1/2(x− b). Then T [E] = M−1/2(M1/2B+ b− b) = B = E0 which satisfies the first
condition in (6.13). However, we cannot assert that T [H] = H0 and T [E′] = E′0. So we consider another
invertible affine transformation that slightly modifies T . By Lemma 6.3, for any vector x ∈ RV and j ∈ V ,
there exists a matrix R ∈ RV×V , called a rotation matrix, such that RRT = RTR = I and Rx = ‖x‖ej . So
define a rotation matrix R ∈ RV×V for M1/2a and i so that

RM1/2a = ‖M1/2a‖ei ; (6.15)

also, define the invertible affine transformation S : x ∈ RV 7→ RM−1/2(x − b). We prove S satisfies the
conditions in (6.13). First, we show S[E] = E0. By Proposition 6.1, since E = E(M, b), it follows that
E = M1/2B+ b = {M1/2x+ b ∈ RV : x ∈ B}, and so

S[E] = S[M1/2B+ b]

= { y ∈ RV : ∃x ∈ B s.t. y = RM−1/2(M1/2x+ b− b)}
= { y ∈ RV : ∃x ∈ B s.t. y = Rx}
= { y ∈ RV : y ∈ B} = B ,

(6.16)

where the second last equality holds since orthogonal matrices preserve norms.
Now we show S[H] = H0. Since M1/2 is invertible and a 6= 0 by hypothesis, we have M1/2a 6= 0. Then

‖M1/2a‖ > 0, and so from (6.15) it follows that

ei = 1
‖M1/2a‖RM

1/2a . (6.17)

58

Moreover, by (6.2), note that
M1/2RTRM−1/2 = M1/2M−1/2 = I . (6.18)

Thus,

y ∈ H0 ⇔ y ∈ RV and eTi y ≥ 0

⇔ ∃x ∈ RV s.t. y = S(x) and eTi S(x) ≥ 0

⇔ ∃x ∈ RV s.t. y = S(x) and
1

‖M1/2a‖
aTM1/2RTS(x) ≥ 0 by (6.17)

⇔ ∃x ∈ RV s.t. y = S(x) and aTM1/2RTRM−1/2(x− b) ≥ 0 (6.19)

⇔ ∃x ∈ RV s.t. y = S(x) and aT(x− b) ≥ 0 by (6.18)

⇔ ∃x ∈ RV s.t. y = S(x) and x ∈ H
⇔ y ∈ S[H] ,

where the “if” part of the second “if and only if” of (6.19) holds since S is surjective.
Finally, we show S[E′] = E′0. Again by Proposition 6.1, since E′ = E(M, b), it follows that E′ = M

1/2B+b,
and so

S[E′] = RM−1/2
(
M

1/2B+ b− b
)

(6.8a)
= RM−1/2

(
M

1/2B+
1

n+ 1

Ma√
aTMa

)
= RM−1/2M

1/2B+
1

n+ 1

RM1/2a

‖M1/2a‖
(6.15)

= RM−1/2M
1/2B+

1

n+ 1

‖M1/2a‖ei
‖M1/2a‖

(6.20)

(6.9)
= RM−1/2M

1/2B+ 0 .

In the RHS of the last equation, each matrix in the product RM−1/2M
1/2

is invertible, so the product also is.
Thus, S[E′] is an ellipsoid whence, by Proposition 6.1, S[E′] = E(D, 0) withD := (RM−1/2M

1/2
)(RM−1/2M

1/2
)T.

Since E′0 = E(I, 0), it remains to show that D = I. Indeed,

D = RM−1/2MM−1/2RT (6.8b)
=

n2

n2 − 1

(
RM−1/2MM−1/2RT − 2

n+ 1

RM1/2aaTM1/2RT

aTMa

)
(6.2)
(6.15)

=
n2

n2 − 1

(
I − 2

n+ 1

‖M1/2a‖2eieTi
‖M1/2a‖2

)
=

n2

n2 − 1

(
I − 2

n+ 1
eie

T
i

)
(6.10)

= I .

b) Since E′0 = E(I, 0), by Proposition 6.1, we have that E′0 = I
1/2B + 0 = I

1/2
E0 + 0. Then, by

Lemma 6.2, vol(E′0) = |det(I
1/2

)| vol(E0). Moreover, by Lemma 6.2 again, we have that

vol(E′) = vol(S−1[S[E′]]) = k vol(S[E′]) = k vol(E′0) , and

vol(E) = vol(S−1[S[E]]) = k vol(S[E]) = k vol(E0) ,

for some k ∈ R+. Thus,
vol(E′)

vol(E)
=

vol(E′0)

vol(E0)
= |det(I

1/2
)| . (6.21)

Since det(AB) = det(A) det(B) for any matrices A,B ∈ RV×V , we have det(I) = det(I
1/2

)2, whence

59

|det(I
1/2

)| =
√

det(I) and

√
det(I)

(6.10)
=

[
det

(
n2

n2 − 1

(
I − 2

n+ 1
eie

T
i

))]1/2

=

(
n2

n2 − 1

)n/2[
det

(
I − 2

n+ 1
eie

T
i

)]1/2

cdet(A) = cn det(A) for any A ∈ RV×V , c ∈ R

=

(
n2

n2 − 1

)n/2(
1− 2

n+ 1

)1/2

determinant of a diagonal matrix

=

(
n2

n2 − 1

)(n−1)/2(
n2

n2 − 1

)1/2(
n− 1

n+ 1

)1/2

=

(
n2

n2 − 1

)(n−1)/2(
n2

(n+ 1)2

)1/2

=
n

n+ 1

(
n2

n2 − 1

)(n−1)/2

=

(
1− 1

n+ 1

)(
1 +

1

n2 − 1

)(n−1)/2

≤ e−1/(n+1)e(n−1)/(2(n2−1)) ex ≥ 1 + x for each x ∈ R (see Proposition 2.3)

= e−1/(n+1)e1/(2(n+1))

= e−1/(2(n+1)) .

6.2 The Central-Cut Ellipsoid Method
Throughtout this section, we use U and V to denote finite noempty sets. Also, set n := |V |, and set m := |U |.

Our problem is, given a system of linear inequalities Ax ≤ b, for a matrix A ∈ RU×V and a vector b ∈ RU ,
that determines a polyhedron P , decide whether P is empty or not, and if P is nonempty, we want to
determine a point in it. The ellipsoid method is an algorithm that solves this problem efficiently. We will
present this algorithm with three assumptions: two about the polyhedron P and one about the precision
of the arithmetic operations that the algorithm performs. One can show how to reduce any instance of the
problem to one with these two assumptions about the polyhedron, and one can show how to deal with the
precision issues that arise from the arithmetic operations used; however, we will not cover this here. For a
complete treatment, one can look at Grötschel, Lovász, and Schrijver [12, Chapter 3].

In essence, the algorithm produces a sequence of ellipsoids of decreasing volume that contain the
polyhedron P . This implies our first assumption about P : it must be bounded. Moreover, we require that
the first ellipsoid be a ball B(z, r) of positive volume v0 (It is easy to see that B(z, r) = rIB+ z = E(r2I, z),
i.e., B(z, r) is indeed an ellipsoid).

Now, for each ellipsoid E = E(M, z) produced during its execution, the algorithm tests whether the center
z of E lies in P . If z ∈ P , the algorithm returns z and terminates. Otherwise, there is a valid inequality for
P that is violated by z, and then with the halfspace H determined by this inequality, the algorithms builds
the next ellipsoid E′ of the sequence. From formulas in (6.8), the method set E′ to be the Löwner-John
ellipsoid of the half-ellipsoid E ∩H. By Theorem 6.4, the ellipsoid E′ will contain E ∩H, and it will have
smaller volume than E. Also, as both E and H contain P , the ellipsoid E′ will also contain P .

Then comes the second assumption concerning how the algorithm decides to stop the search for a point in
P and so asserts that P is empty. The algorithm assumes that either P is empty or vol(P) > v for some
given v ∈ R++. Moreover, as the algorithm advances, the volume of the ellipsoids decreases. Thus, as it will
be shown in Theorem 6.5, in at most k iterations (a number in function of n, v0, and v), either a point of
P will be found and returned or an ellipsoid of volume smaller than or equal to v, containing P , will be
generated, and the polyhedron will be asserted to be empty.

Finally, to generate the ellipsoids in the algorithm, some computations such as taking square roots are

60

required. So our algorithm assumes that any arithmetic operation can be computed with infinite precision and
in unit time. That said, a more precise description of the algorithm is as follows, ignoring some implementation
details. We call it the central-cut ellipsoid method since, as we discussed before the Theorem 6.4, we build
a sequence of ellipsoids with the Löwner-John ellipsoids of half-ellipsoids. The next algorithm description and
Theorem 6.5 are inspired in Bertsimas and Tsitsiklis [3, Section 8.3].

Algorithm 6.1: CentralCutEllipsoidMethod(A, b, z, r, v)
Input:

(i) A matrix A ∈ RU×V and a vector b ∈ RU , where n := |V | and m := |U |, that determines a
polyhedron P .

(ii) A vector z ∈ RV and a scalar r ∈ R++ s.t. the ball B(z, r), of volume v0, contains P .
(iii) A scalar v ∈ R++ s.t. vol(P) > v if P is nonempty, and v < v0.

Output: Either assert P is empty or return a point in P

1. k := d2(n+ 1) log(v0/v)e
2. E0 := E(M0, z0), where M0 := r2I and z0 := z, i.e., E0 is the ball B(z, r)
3. for i← 0 to k − 1 do
4. if zi ∈ P then
5. return zi
6. else
7. Find a row `i of A s.t. aT`izi > b`i for a`i := (eT`iA)T, i.e., a valid inequality for P violated

by zi
8. Define Mi+1, zi+1 and so the ellipsoid Ei+1 := E(Mi+1, zi+1) by applying the formulas (6.8a)

and (6.8b) to Mi, zi, and a`i so that Ei ∩Hi ⊆ Ei+1, where Hi := {x ∈ RV : aT`ix ≤ a
T
`i
zi}

is a halfspace
9. return P is empty

Theorem 6.5 (Correctness of Ellipsoid Method). Let A ∈ RU×V be a matrix, and let b ∈ RU . Set
P := {x ∈ RV : Ax ≤ b} to be a polyhedron. Suppose that P is bounded and that P either is empty or has
positive volume. Let z ∈ RV and let r ∈ R++ such that P ⊆ B(z, r), and set v0 := vol(B(z, r)). Let v ∈ R++

be such that vol(P) > v if P is nonempty. Set k := d2(n+ 1) log(v0/v)e ≥ 1. Set M0 := r2I and set z0 := z
so that E0 := E(M0, z0) = B(z, r). For each i ∈ {0, . . . , k − 1}, if zi is defined and there exists `i ∈ [m] such
that aT`izi > b`i for a`i := (eT`iA)T, then define Mi+1 and zi+1 by applying the formulas (6.8a) and (6.8b) to
Mi, zi, and a`i , and set Ei+1 := E(Mi+1, zi+1). Moreover, set j to be the largest integer in {0, . . . , k} such
that Ej is defined. Then either j < k and zj ∈ P , or j = k and P is empty.

Proof. If j < k, then Azj ≤ b, i.e., zj ∈ P . Suppose j = k. We want to show that P is empty which, by our
assumption on P , is equivalent to show that vol(P) ≤ v. We will show vol(P) ≤ v by showing that P ⊆ Ek
and that vol(Ek) ≤ v.

First, we show, using induction on i ∈ {0, 1, . . . , k}, something stronger than P ⊆ Ek, that is, P ⊆ Ei for
each i ∈ {0, 1, . . . , k}. By hypothesis, we have P ⊆ E0. Let 0 ≤ i < k, and suppose P ⊆ Ei. We will show
that P ⊆ Ei+1. Since i < k = j, we have aT`izi > b`i . Set Hi := {x ∈ RV : aT`ix ≤ a

T
`i
zi} to be a halfspace.

Then P ⊆ Hi. Moreover, by induction hypothesis, P ⊆ Ei. Therefore, we have P ⊆ Ei ∩Hi, and then, by
item a) of Theorem 6.4, it follows that P ⊆ Ei+1. Thus, P ⊆ Ek.

Now, by induction on i ∈ {0, 1, . . . , k} and using item b) of Theorem 6.4, we have that

vol(Ek) < vol(E0)e−k/(2(n+1)) = v0e
−d2(n+1) log(v0/v)e/(2(n+1)) ≤ v0e

− log(v0/v) = v .

A few observations are worth making. First, we remark on the assumption of v < v0 that implies k ≥ 1.
If v ≥ v0, then, by the assumptions in the input of the algorithm, we would have that P is empty and the
algorithm would not be necessary. Second, we remark on the value of k. We want k to be the smallest
positive integer for which vol(Ek) ≤ v so that, if the algorithm reaches this point, we can assert that P is
empty. Since we have used formulas (6.8a) and (6.8b) to build the sequence of ellipsoids in the algorithm,
we used the bound in item b) of Theorem 6.4 to determine such k. Thus, finding such k reduces to solving
v0e
−k/2(n+1) ≤ v.

61

6.3 Equivalence of Separation and Optimization
In this section, most definitions and the statement of Theorem 6.8 are from Schrijver [15, Section 5.11.]. We
present them, with a slight rewriting in some parts, so that we can use Theorem 6.8 in the proof of Theorem 3.5
— the result that shows we can perform Line 1 of ApproxATSP (see Algorithm 3.1) in polynomial-time.

Let Σ be a finite set, called alphabet, whose elements are called symbols. Then set Σ∗ to be the set of
all finite sequences of symbols, called words or strings, of Σ, that is, Σ∗ := { (w1, . . . , wk) : k ∈ N, w ∈ Σk}.
For any k ∈ N, abbreviate words w = (w1, . . . , wk) by w = w1 . . . wk. The size of a word w in Σ∗, denoted
by |w|, is the number of symbols in the sequence that defines w. Let Π be a subset Σ∗, called a language
over Σ. Then define the family (Pσ)σ∈Π where Pσ is a rational polyhedron in QEσ and Eσ is a finite set. We
state two assumptions that a family such as (Pσ)σ∈Π can have:

There is a polynomial-time algorithm that, given σ ∈ Σ∗, tests if σ belongs to Π (6.22a)
and, if so, returns the set Eσ;
There is a polynomial p such that Pσ is determined by linear inequalities each of (6.22b)
size at most p(size(σ)).

If P is a nonempty polyhedron in RV , for a finite and nonempty set V , there exists a cone charcone(P)
associated to it, called characteristic cone of P , defined by:

charcone(P) := { y ∈ RV : x+ λy ∈ P for each x ∈ P, λ ≥ 0} , (6.23)

Now we define the separation and optimization problems, and then Theorem 6.8 presents how they are
related with respect to being solvable in polynomial-time.

Definition 6.6. The optimization problem for (Pσ)σ∈Π is the problem:
Input: σ ∈ Π and c ∈ QEσ
Task: solve max{ cTx : x ∈ Pσ} which can be formulated as an LP, and so, by Theorem 2.4, have three

possible solutions: the LP is unfeasible, i.e., Pσ is empty; the LP is unbounded, i.e., there is y ∈ charcone(Pσ)
with cTy > 0; the LP has an optimum solution, i.e., there is x ∈ Pσ maximizing cTx over Pσ.

Definition 6.7. The separation problem for (Pσ)σ∈Π is the problem:
Input: σ ∈ Π and x ∈ QEσ
Task: decide if x belongs to Pσ, and if not, find a separating hyperplane between x and Pσ, that is, find a

vector c ∈ QEσ such that cTx < cTx for each x ∈ QEσ .

Theorem 6.8 ([15, Theorem 5.10.]). Let Π ⊆ Σ∗, and let (Pσ)σ∈Π satisfy (6.22). Then the optimization
problem for (Pσ)σ∈Π is polynomial-time solvable if and only if the separation problem for (Pσ)σ∈Π is
polynomial-time solvable.

62

References

[1] N. Anari and S. O. Gharan. “Effective-resistance-reducing flows, spectrally thin trees, and asymmetric
TSP”. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science—FOCS 2015. IEEE
Computer Soc., Los Alamitos, CA, 2015, pages 20–39. url: https://doi.org/10.1109/FOCS.2015.11
(cited on page 1).

[2] A. Asadpour, M. X. Goemans, A. Madry, S. Oveis Gharan, and A. Saberi. “An O(log n/ log log n)-
approximation algorithm for the asymmetric traveling salesman problem”. In: Proceedings of the
Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, Philadelphia, PA, 2010,
pages 379–389 (cited on pages i, 1, 2, 12).

[3] D. Bertsimas and J. Tsitsiklis. Introduction to linear optimization. Athena Scientific, 1997 (cited on
pages 57, 61).

[4] R. G. Bland, D. Goldfarb, and M. J. Todd. “The ellipsoid method: a survey”. In: Oper. Res. 29.6 (1981),
pages 1039–1091. url: https://doi.org/10.1287/opre.29.6.1039 (cited on page 57).

[5] C. Chekuri, J. Vondrak, and R. Zenklusen. “Dependent Randomized Rounding for Matroid Polytopes
and Applications”. In: (2009). url: http://arxiv.org/abs/0909.4348 (cited on page 38).

[6] N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem. Technical
Report 388. Graduate School of Industrial Administration, Carnegie Mellon University, 1976 (cited on
page 1).

[7] W. J. Cook. In pursuit of the traveling salesman. Mathematics at the limits of computation. Princeton
University Press, Princeton, NJ, 2012, pages xvi+228 (cited on page 1).

[8] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver. Combinatorial optimization.
Wiley-Interscience Series in Discrete Mathematics and Optimization. A Wiley-Interscience Publication.
John Wiley & Sons, Inc., New York, 1998, pages x+355.

[9] A. M. Frieze, G. Galbiati, and F. Maffioli. “On the worst-case performance of some algorithms for the
asymmetric traveling salesman problem”. In: Networks 12.1 (1982), pages 23–39 (cited on page 1).

[10] M. R. Garey and D. S. Johnson. Computers and intractability. A guide to the theory of NP-completeness,
A Series of Books in the Mathematical Sciences. W. H. Freeman and Co., San Francisco, Calif., 1979,
pages x+338 (cited on page 13).

[11] G. R. Grimmett and D. R. Stirzaker. Probability and random processes. Third. Oxford University Press,
New York, 2001, pages xii+596 (cited on page 30).

[12] M. Grötschel, L. Lovász, and A. Schrijver. Geometric algorithms and combinatorial optimization.
Second. Volume 2. Algorithms and Combinatorics. Springer-Verlag, Berlin, 1993, pages xii+362. url:
https://doi.org/10.1007/978-3-642-78240-4 (cited on page 60).

[13] P. R. Halmos. Naive set theory. Reprint of the 1960 edition, Undergraduate Texts in Mathematics.
Springer-Verlag, New York-Heidelberg, 1974, pages vii+104 (cited on page 50).

[14] D. R. Karger. “Global min-cuts in RNC, and other ramifications of a simple min-cut algorithm”. In:
Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (Austin, TX, 1993).
ACM, New York, 1993, pages 21–30 (cited on pages 46, 49).

63

https://doi.org/10.1109/FOCS.2015.11
https://doi.org/10.1287/opre.29.6.1039
http://arxiv.org/abs/0909.4348
https://doi.org/10.1007/978-3-642-78240-4

[15] A. Schrijver. Combinatorial optimization. Polyhedra and efficiency. Vol. A. Volume 24. Algorithms and
Combinatorics. Paths, flows, matchings, Chapters 1–38. Springer-Verlag, Berlin, 2003, pages xxxviii+647
(cited on pages 16, 24, 62).

[16] A. Schrijver. Combinatorial optimization. Polyhedra and efficiency. Vol. B. Volume 24. Algorithms and
Combinatorics. Matroids, trees, stable sets, Chapters 39–69. Springer-Verlag, Berlin, 2003, i–xxxiv and
649–1217 (cited on pages 38–40, 45).

[17] A. Schrijver. Theory of linear and integer programming. Wiley-Interscience Series in Discrete Mathe-
matics. A Wiley-Interscience Publication. John Wiley & Sons, Ltd., Chichester, 1986, pages xii+471
(cited on page 40).

[18] O. Svensson, J. Tarnawski, and L. A. Végh. “A constant-factor approximation algorithm for the
asymmetric traveling salesman problem”. In: STOC’18—Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing. ACM, New York, 2018, pages 204–213. url: https://doi.org/
10.1145/3188745.3188824 (cited on page 2).

[19] V. Traub and J. Vygen. “An improved approximation algorithm for ATSP”. In: CoRR abs/1912.00670
(2019). url: http://arxiv.org/abs/1912.00670 (cited on page 2).

[20] V. V. Vazirani. Approximation algorithms. Springer-Verlag, Berlin, 2001, pages xx+378 (cited on
page 1).

64

https://doi.org/10.1145/3188745.3188824
https://doi.org/10.1145/3188745.3188824
http://arxiv.org/abs/1912.00670

	Introduction
	Preliminaries
	Notation
	General Math
	Graph Theory
	Polyhedra and Linear Programming
	Linear Algebra

	The ATSP and the Asadpour et al. Algorithm
	Max-Flow Min-Cut and Circulations
	The Max-Flow Min-Cut Theorem
	The Edmonds-Karp Algorithm
	Hoffman's Circulation Theorem

	Randomized Algorithms andSampling Spanning Trees
	Discrete Probability
	Concentration Bounds
	Randomized Swap Rounding
	Sampling Random Spanning Tree of Gz*
	Karger's Bound on the Number of -Minimum Cuts
	Finding an (, 2)-Thin Tree of Gz* With High Probability

	The Ellipsoid Method
	The Geometry of Ellipsoids
	The Central-Cut Ellipsoid Method
	Equivalence of Separation and Optimization

	References

