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Abstract

Snakes use their venom for both self-defense and killing prey. These substances are

complex protein mixtures, usually studied using mass spectrometry (MS)-based proteomics.

In recent studies, evidence has been shown that the proteomic pro�les of snakes of the

genus Bothrops correlate with the phylogenetic tree of these same organisms. However,

the overrepresentation of some species in databases used for protein identi�cation after

the MS experiments introduced bias to these results. In order to mitigate this problem,

a previous work proposed the usage of MS raw data, represented as retention time by

mass-to-charge matrices, for the construction of phyloproteomic trees using Bayesian

inference. However, the Bayesian inference of phyloproteomic trees is a computationally

intense method that limits raw data partitioning exploitation. This project developed a

methodology that uses the same MS raw data to generate phyloproteomic trees using

hierarchical clustering, a less computationally intensive technique. To this end, the raw

data is uniformly partitioned and mapped to one-dimensional vectors that were later used

for clustering. The resulting dendrograms are validated with statistical bootstrapping. We

show that the hierarchical clustering was able to yield similar results to previous works

and that the use of raw MS data is a viable technique for phyloproteomic analysis.

Keywords: Phyloproteomic Analysis, Phylogeny, Snake Venoms, Bothrops, Mass Spec-

trometry, Hierarchical Clustering, Bootstrapping.





v

Resumo

Serpentes utilizam seus venenos tanto para autodefesa quanto para obtenção de presas.

Essas substâncias tratam-se na verdade de complexas misturas proteicas, que normalmente

são estudadas através de técnicas como a proteômica baseada em espectrometria de massas

(EM). Em trabalhos recentes, foram mostrados indícios de que os per�s proteômicos de

serpentes do gênero Bothrops se correlacionam com a árvore �logenética desses mesmos

organismos. Todavia, a superrepresentação de algumas espécies no banco de dados

utilizado para identi�cação de proteínas após o ensaio de EM introduziu viés nesses

resultados. Para mitigar isso, foi proposto em outro trabalho o uso de dados brutos de EM

para construção de árvores �loproteômicas por inferência Bayesiana, utilizando como

base matrizes de tempo de eluição por massa/carga. Todavia, a inferência Bayesiana

de árvores �loproteômicas é um método computacionalmente intenso que limita a

exploração de particionamento dos dados brutos. Neste projeto, desenvolvemos uma

metodologia que utiliza os mesmos dados brutos de EM para gerar árvores �loproteômicas

utilizando agrupamento hierárquico, uma técnica menos custosa computacionalmente.

Para este �m, os dados brutos são particionados uniformemente e mapeados para vetores

unidimensionais que posteriormente foram utilizados para construir hierarquias de grupos.

Os dendrogramas gerados são validados com bootstrapping estatístico. Mostramos que o

agrupamento hierárquico foi capaz de produzir resultados similares aos de trabalhos an-

teriores e que o uso de dados brutos de EM é uma técnica viável para análise �loproteômica.

Palavras-chave: Análise Filoproteômica, Filogenia, Venenos de Serpentes, Bothrops,

Espectrometria de Massas, Agrupamento Hierárquico, Bootstrapping.
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Chapter 1

Introduction

Snake venoms are a complex mixture of peptides and proteins that play a fundamental
role in the survival of venomous snakes. Their venoms are used both to immobilize and
kill prey and predators. Protein sets, also called proteomes, are studied in the �eld of
knowledge called proteomics. Mass spectrometry (MS) is a relevant analytical tool used in
proteomics since it allows the identi�cation of venom compositions, enabling the study of
how the venom compounds a�ect poisoned organisms. MS fragments and ionizes samples
by applying chemical and physical processes and subsequently measuring the mass-to-
charge ratio of ions. Proteins can then be identi�ed through database queries that associate
an ion detection pattern to a protein. In recent studies, MS has been used to show evidence
that the venom proteomic pro�le of species of the Bothrops genus correlates with the
phylogenetic classi�cation obtained through mitochondrial DNA (mtDNA) combined with
morphological characters (Andrade-Silva, Zelanis, et al., 2016, Raposo, 2018); a similar
result, though with a smaller correlation, was also veri�ed when compared venom glycan
pro�les of the same species against their phylogenetic classi�cation (Andrade-Silva,
Ashline, et al., 2018).

However, Andrade-Silva, Zelanis, et al., 2016, used techniques that limited an in-
depth investigation of the experiments generated in these studies. For instance, hierarchical
clustering was applied over proteins identi�ed by MS with the aid of a database to generate
cladograms. Nevertheless, some snake venoms are underrepresented in protein databases,
which inevitably biased the results to some degree. To mitigate this problem, Raposo, 2018,
applied de novo peptide sequencing to avoid the usage of a protein database. Bayesian
inference of phyloproteomic trees was used instead of hierarchical clustering. Despite
showing promising results, this methodology was limited by the number of false positive
peptides candidates.

Maciel, 2019, initiated a novel alternative methodology that uses a partitioning of
MS raw data to infer phyloproteomic trees using Bayesian inference without identify-
ing proteins or peptides. This approach eliminates potential biases caused by molecular
identi�cation steps. Despite showing consistent results with previous works, Bayesian
inference is a computationally expensive technique, which has limited the exploration of
new data partitioning techniques that might yield better results. Therefore, it is an open
problem the development of computationally cheaper approaches for this problem, which
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would allow researchers to perform phyloproteomic analyses by comparing MS raw data
and protein database identi�cation phyloproteomic trees using the same tree generation
technique.

1.1 Objectives
This thesis aims to develop a methodology to generate phyloproteomic trees from

mass spectrometry raw data using hierarchical clustering, an approach that is both easy
to interpret and computationally cheaper.

Speci�c goals of this work are the application of the developed methodology into seven
venoms from species of the Bothrops genus measured by mass spectrometry, and also the
validation of the resulting phyloproteomic trees with statistical bootstrapping.

1.2 Structure Overview
The remainder of this thesis is organized in the following manner:

• Chapter 2 (Literature Review) provides the theoretical background required to
understand this work. Key biological concepts, mass spectrometry-based proteomics,
hierarchical clustering, and statistical bootstrapping applied to cluster validation
are presented;

• Chapter 3 (Materials and Methods) is a detailed description of all steps required
to reproduce the pipeline proposed, from venom extraction until the generation of
phyloproteomic trees. ;

• Chapter 4 (Results) summarizes essential results obtained in a descriptive manner;

• Chapter 5 (Discussion) discuss the �ndings of this work from both a technical and
biological perspective;

• Chapter 6 (Conclusion) sums up the content of this work, exposing important
contributions and the next challenges of this line of research.

• Appendix A lists parameters used in the software used for processing LC-MS raw
data.

• Appendix B presents a brief discussion of software improvements implemented in
this work from a software engineering perspective.



3

Chapter 2

Literature Review

In this chapter, we review the main concepts used throughout this thesis. In Section 2.1,
we present some biological concepts such as evolutionary trees, Central Dogma, mito-
chondrial DNA, and snake venoms. In Section 2.2, we review some properties of the mass
spectrometry tecnique. Finally, in Sections 2.3 and 2.4, we present some fundamentals on,
respectively, hierarchical clustering and its validation (bootstrapping).

2.1 Biological Concepts
The biological concepts presented in Sections 2.1.1–2.1.3 are based in Page and E.

Holmes, 2009.

2.1.1 Evolutionary Trees
There is evidence that all current life on Earth has a common descent. The investigation

of processes that gave rise to the great variety of life on Earth today is the main interest of
evolutionary biology, a biology sub�eld. One of its goals is to reconstruct the "tree of life",
a model that expresses how all life is related by common ancestry.

A tree is a mathematical structure typically chosen to model the history of evolution.
It is a set of nodes connected by edges where terminal nodes, or leaves, represent species
that can be either existing or extinct. Internal nodes may represent hypothetical ancestors
of their child nodes. Consequently, the root node represents the hypothetical ancestor of
all organisms in the tree.

There are various types of treelike evolutionary diagrams with di�erent interpretations
associated with them. Unfortunately, literature refers to these diagrams by di�erent names.
The evolutionary tree terminology used in this text is de�ned below:

Dendrogram: a generic diagram representing a tree.

Cladogram: simple branching diagram where each branch indicates a shared common
ancestry between terminal nodes. For example, Figure 2.1(a) shows that species A and B
share a more recent common ancestor than they do with C.
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Phylogram: this diagram contains more information than cladograms. The branch
lengths are associated with some metric that represents some evolutionary change metric.
Figure 2.1(b) is an example of a phylogram.

A node that branches in more than two edges is a polytomy. There are two possible
interpretations. One of them, hard polytomy, is a simultaneous divergence between all
descents. The other, soft polytomy, happens when there is uncertainty about speciation
order due to a lack of evidence available. Since hard polytomies are unlikely to occur, this
text treats all polytomies as soft polytomies.

A phylogenetic tree is an evolutionary tree inferred from mitochondrial DNA and
morphological characters. Similarly, a phyloproteomic tree is a dendrogram obtained from
proteomic analysis.

(a) (b)

Figure 2.1: Evolutionary trees. (a) A cladogram example containing three organisms. (b) A phy-

logram containing seven organisms. The branch lengths are proportional to the amount of change

undergone by the organisms over time.

2.1.2 Proteins, DNA, RNA and the Central Dogma of Molecular
Biology

Proteins are long-chain molecules made of bonded amino acid strings. They play an
essential role in the biological world, performing a wide variety of functions in living
things. For instance, proteins can act as biological catalysts for chemical reactions, identify
and neutralize infectious agents, and compose multiple body structures. Snake venoms
are composed mostly of proteins and peptides (strings with up to 50 amino acids).

The production of proteins, also known as protein synthesis, happens within the cells
of living beings. A molecule named deoxyribonucleic acid (DNA) encodes the instructions
for assembling proteins. O�spring inherits DNA from the parent generation. The DNA
molecule consists of two long chains of nucleotides organized in a double-stranded helix
form. An encoded instruction in the DNA for building a particular protein is known as a
gene.
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The process of protein synthesis occurs in two steps:

Transcription: A gene encoded in the DNA is copied into a molecule called messenger
ribonucleic acid (mRNA). This molecule acts as a messenger, carrying genetic information
from the DNA to the cell structure responsible for assembling proteins, the ribosome.

Translation: the process by which the instructions in the mRNA molecule are decoded
and turned into proteins. The ribosome reads the sequence encoded in the mRNA and
turns each nucleotide triplet (i.e., codon) into an amino acid. As a result, a protein is
formed.

This whole process is also known as Central Dogma of Molecular Biology. The relation-
ship between Central Dogma and snake venom production is depicted in Figure 2.2.

Figure 2.2: Illustration of the central dogma of molecular biology applied to snake venom
protein synthesis: DNA, mRNA and protein �gures, by Philippe Hupé, are licensed under CC BY-SA

3.0. Snake image was designed by Vecteezy.com.

2.1.3 Mitochondrial DNA
Cells usually are classi�ed into two groups: eukaryotic and prokaryotic. The main

distinction between these two groups is the absence of membrane-bound specialized
subunits in prokaryotic cells. These subunits are known as organelles.

In a typical eukaryotic cell, one can �nd organelles called mitochondria. These struc-
tures are known to be primarily responsible for cellular respiration, a process in which
glucose is broken and converted into adenosine triphosphate (ATP), the molecule that
provides energy to the cell.

Although most of the cell’s genetic material is found in an organelle called nucleus,
a mitochondrion has its own DNA, referred to as mitochondrial (mtDNA). In plants and
animals, mtDNA does not appear to be subjected to recombination during reproduction
since mtDNA is inherited directly from the female parent, except for a few extraordinary
cases in some species. Also, there is evidence that most mtDNA regions evolve much faster
than nuclear DNA, which tends to be very informative in evolutionary research of similar

https://commons.wikimedia.org/wiki/File:Central_dogma_of_molecular_biology.svg
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://www.vecteezy.com/
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organisms. All in all, the lack of recombination due to maternal inheritance and the rapidly
evolving genetic material make mtDNA analysis a vital tool in phylogenetic studies.

Cytochrome b (Cyt b) and NADH dehydrogenase subunit 4 (ND4) are examples of
gene sequences found in mtDNA that are widely used as genetic markers due to their
variability. Fenwick et al., 2009 combined Cyt b and ND4 with morphological characters
to construct phylogenetic trees of snake species of the Bothrops genus (Figure 2.3).

Figure 2.3: Phylogram of seven Bothrops species: This phylogenetic tree was obtained through

Bayesian inference over Cyt b and ND4 data. The numbers over the nodes are posterior probabilities

of each branch. The segment next to the tree indicates the number of substitutions per site. Figure

extracted from Raposo, 2018.

2.1.4 Snake Venoms
Snake venoms are composed of a complex peptide and protein mixture. They play

a fundamental role in the survival of venomous species since it is vital for hunting and
self-defense. Bothrops snakes venom proteome contains more than a hundred di�erent
proteins that damage physiological functions of prey. Previous works (Andrade-Silva,
Zelanis, et al., 2016, Andrade-Silva, Ashline, et al., 2018, Raposo, 2018, Maciel, 2019)
presented evidence that Bothrops phyloproteomic trees generated from venom proteome
correlate with phylogenetic trees.
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2.2 Mass Spectrometry
Mass spectrometry (MS) is a sensitive analytical technique for measuring the mass-

to-charge ratio (m/z) of ionized molecules in a particular sample. These measurements
can be used for several purposes, such as identifying an unknown substance, quantifying
known compounds, and investigating molecular structures. This section was based on the
articles of Aebersold and Mann, 2003 and Colinge and Bennett, 2007. Refer to them
for detailed information.

A mass spectrometer, the device used to perform an MS procedure, will produce a mass
spectrum, a plot of relative ion intensity detection (or relative abundance) versus mass-
to-charge ratio. There is a wide variety of di�erent mass spectrometer designs. Choosing
a mass spectrometer to run an analysis normally depends on the application, cost, and
what kind of information one wishes to obtain. Nevertheless, all mass spectrometers
work based on the same principles. According to the Lorentz force law (Equation 2.1), an
electromagnetic force F applied on an object is dependent on its ionic charge q, where E
is an electric �eld and v × B is the vector cross product between the magnetic �eld and
the ion’s velocity:

F = q(E + v × B). (2.1)

Additionally, from Newton’s second law of motion (equation 2.2), it is implied that the net
force F applied to a body with acceleration a is dependent on its mass m:

F = ma. (2.2)

Thus, by combining Equations 2.1 and 2.2, one can conclude that it is possible to measure
m/z by applying an electric or magnetic �eld (or both) on an accelerating ion:

m
q = E + v × B

a . (2.3)

Consequently, mass spectrometers are generally composed of the same three basic
components: an ion source, a mass analyzer, and an ion detector. In Figure 2.4, we present
a general mass spectrometer model.

Figure 2.4: General mass spectrometer model.

The mass spectrometer model works as the following: Initially, the injected sample is
ionized by an ion source. A simple example of an ion source is electron ionization (EI), in
which the sample is subjected to an electron beam that will eventually produce electrically
charged compounds (i.e., ions). These ions are accelerated and travel to a mass analyzer,
where they are separated according to their m/z. There are several di�erent types of mass
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analyzers, an example being a magnetic sector mass analyzer where separation is achieved
by exposing ions to a magnetic �eld produced by an external magnet, causing a di�erent
de�ection angle on ions with di�erent m/z values. Finally, ions reach the detector where
they are counted, and their m/z values are registered. Figure 2.5 illustrates a schematic
view of a magnetic sector mass spectrometer.

Figure 2.5: A schematic view of a magnetic sector mass spectrometer performing an anal-
ysis: Figure by Flowers et al., 2015 is licensed under CC BY 4.0.

Mass analyzers are a crucial component in MS as they directly impact critical parame-
ters used to measure a mass spectrometer performance such as resolution, precision, mass
accuracy, and abundance sensitivity. As mentioned earlier, there are di�erent types of mass
analyzers where each of them has its own advantages and disadvantages. Considering
this, it is possible to couple two or more mass analyzers in tandem and bene�t from their
respective strengths, therefore producing a thorough analysis. This MS technique is known
as tandem mass spectrometry (MS/MS or MS2), and it consists of two stages. The �rst
stage (MS1) selectively isolates ionized molecules by their m/z. Then the selected ions are
fragmented in a process called collision-induced dissociation (CID). In the second stage
(MS2), the m/z values of the fragments are calculated, making it possible to study a large
molecule’s composition in a complex mixture.

2.2.1 Mass Spectrometry-Based Proteomics

Proteomics is the large-scale study of proteomes in a biological system, focusing on pro-
tein identi�cation, quanti�cation, expression, interaction, and dynamics. The proteomics
�eld has dramatically bene�ted from mass spectrometry, especially MS/MS. It has allowed
an in-depth study of biomolecules structure and both proteins and peptides identi�cation
and quanti�cation.

https://creativecommons.org/licenses/by/4.0/
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2.2.2 Protein and Peptide Identi�cation
There are several approaches to MS-based protein and peptide identi�cation. A common

technique uses proteolytic enzymes (e.g., trypsin) to digest proteins into peptides. An MS
analysis is performed over the peptides. They are individually identi�ed by applying a score
function to their fragmentation spectrum and using the score to �nd the corresponding
peptide from a database. Therefore, by identifying the peptides present in a sample, it
would be theoretically possible to apply reverse engineering to identify the proteins they
used to compose. However, assigning a score rule for protein identi�cation is still an open
problem due to peptides that are shared by many proteins. Thus, there are many options
available with their own pros and cons. For instance, a popular approach to this problem
is merely summing the highest score for each peptide identi�ed and comparing it to the
protein scores previously calculated.

2.2.3 Liquid Chromatography-Mass Spectrometry
Protein samples usually are complex mixtures containing several other proteins and

peptides. For this reason, MS/MS is often combined with liquid chromatography (LC),
a method for physically separating a sample into individual components in order to
examine them in simpler samples or selectively choose what will be analyzed by the mass
spectrometer. This combination is known as liquid chromatography-mass spectrometry
(LC-MS) and is done by coupling an LC system to a mass spectrometer. A complete LC-MS
analysis is referred to as LC-MS run.

In the LC phase, the sample is soaked in a liquid solvent. The solution is pumped
through a column �lled with an adsorbent material. The molecules in the mixture are
separated by their retention time (RT), i.e., the time they remain traveling in the column,
as di�erent compounds in the solution move with di�erent velocities.

Afterward, the separated molecules are one by one sent to the mass spectrometer to
have their m/z measured. The outcome of an LC-MS run has three dimensions: ion intensity
detection, mass-to-charge ratio, and retention time. An ion intensity map, or ion map, is
a bidimensional representation of an LC-MS run, where the ion intensity detection is a
function of m/z values and retention times. The plot in Figure 2.6 is an example of an ion
intensity map representation. This terminology is used by MS Progenesis QI software, and
by Maciel, 2019. The additional sample separation provided by LC enriches the analysis
that could be carried out from an LC-MS run, reducing spectral interference and increasing
the retrieval of structural information about the sample.
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Figure 2.6: Ion intensity map: a visual representation of raw data measured by LC-MS from Both-

rops jararaca snakes venoms.
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2.3 Hierarchical Clustering
Hierarchical clustering is a common method used to cluster elements based on similarity.

Its search strategy consists of building a binary tree in which the leaves are the initial
elements, and the root represents a cluster that contains all elements. The �nal level of
the tree is an ordered list of elements that can be easily visualized in diagrams that can
represent trees, called dendrograms (Gentleman, 2008).

The tree of elements can be built using two di�erent approaches:

Divisive: there is one initial cluster containing every element, and the tree is built
from top-down by dividing the elements into clusters recursively.

Agglomerative: each element is assigned to its own cluster, and the tree is built from
bottom-up by grouping the leaves into clusters recursively.

The well known agglomerative hierarchical clustering is described in Algorithm 1,
adapted from Duda et al., 1973. It requires some strategy in order to measure how dif-
ferent two clusters are. These strategies are called linkage methods, and they generally
are a function of some dissimilarity measure between two pairs of elements. The most
trivial choices for a dissimilarity measure are distance metrics such as the Euclidean and
Manhattan distance.

Algorithm 1: Agglomerative hierarchical clustering
Assign every element to its own singleton cluster
while number of clusters > 1 do

Merge the two most similar clusters
end while

The most common linkage methods are listed below:

Single linkage: the distance between two clusters is the distance of the nearest pair
of elements between the two clusters.

Complete linkage: the distance between two clusters is the distance of the farthest
pair of elements between the two clusters.

Average linkage: the distance between two clusters is the pairwise average distance
between the elements of the two clusters.

2.4 Cluster Validation with Bootstrapping
Hierarchical clustering methods results depend on the choice of dissimilarity metrics

and the chosen linkage strategy. In high dimensional datasets, slight changes in the dataset
often yield very di�erent outcomes. A natural question that arises is whether the resulting
clusters are just an artifact of the chosen cluster algorithm or a meaningful representa-
tion of an underlying structure in the data. Additionally, the identi�ed clusters are also
susceptible to statistical sampling error and natural sampling variability. Consequently,
there are chances that the formed clusters may not re�ect the true hypothesis. Therefore,
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a methodology is required to measure cluster stability and assess the reliability of the
hypothesis obtained from the cluster analysis (Zumel, 2015, Suzuki and Shimodaira,
2004).

Ideally, to test the stability of clusters in a particular clustering method, one would
need to apply new samples from the data generating process to the algorithm and verify
how the results change. However, when there is no possibility of obtaining new samples,
a smart idea would be generating new samples by randomly sampling elements of the
available data. This idea is known as statistical bootstrapping (S. Holmes and Huber, 2019,
Suzuki and Shimodaira, 2006).

P-values for each cluster can be estimated from the bootstrapped samples. Hence,
cluster accuracy can be measured. Moreover, hypothesis tests can be applied to each
cluster. If the cluster estimated p-value is less than some � , then this cluster is rejected
with � signi�cance level (Suzuki and Shimodaira, 2004).

Two examples of bootstrapping resampling p-values are listed below:

Bootstrap probability (BP): the frequency that a cluster appears in the bootstrap
replicates.

Approximately unbiased (AU): an approximated p-value calculated by multiscale
bootstrap resampling (Efron et al., 1996, Shimodaira, 2002, Shimodaira, 2004), a boot-
strap technique where the data size of bootstrap samples are intentionally modi�ed. AU
p-value is proved to be less biased than BP value.

In Figure 2.7, we provide an example of a phylogram generated by hierarchical cluster-
ing and assessed using bootstrapping.
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Figure 2.7: Hierarchical clustering of 73 lung tumors validated with bootstrapping: values

over the branches are AU (left, red) and BP (right, green) p-values, image from Suzuki and Shi-

modaira, 2006.
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Chapter 3

Materials and Methods

This chapter describes the methodology developed to generate phyloproteomic trees
from LC-MS runs raw data. Furthermore, it includes details about the automation software
implemented for this work as well as external resources used. Figure 3.1 is a �owchart
where the full pipeline process can be visualized, from venom extraction to the generation
of phyloproteomic trees. The full pipeline incorporates previous work on the subject.
This work is a direct continuation of Maciel, 2019, which was based in Raposo, 2018 and
Andrade-Silva, Zelanis, et al., 2016.

The pipeline implementation is available under the GNU General Public License in the
repository below:

https://github.com/GuilhermeVieira/MITE.

Figure 3.1: Pipeline �owchart: rectangles show a process, and parallelograms are input or output

data. The steps under the green and red dashed rectangles are described in Andrade-Silva, Zelanis,

et al., 2016 and Maciel, 2019. The processes implemented in this work are under the blue dashed

rectangles.

https://www.gnu.org/licenses/gpl-3.0.html
https://github.com/GuilhermeVieira/MITE
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3.1 LC-MS Data Acquisition

Andrade-Silva, Zelanis, et al., 2016 describe venom extraction, sample preparation,
and LC-MS analysis, conducted in two independent experiments. The highlighted green
area in Figure 3.1 represents these steps. Pooled venom samples were extracted from seven
species of Bothrops genus (B. cotiara, B. insularis, B. jararaca, B. moojeni, B.neuwiedi, B.

jararacussu, and B. erythromelas), where each venom pool was composed of extractions
from at least ten specimens. Also, samples were subjected to trypsin digestion. The resulting
peptide mixtures were injected into an EASY II-nanoLC system coupled to an LTQ-Orbitrap
Velos mass spectrometer, both Thermo Fisher Scienti�c instruments. An LC-MS run was
performed for each experiment, where the output is a RAW �le, a proprietary �le format.
In total, fourteen �les were generated, two for each species. For detailed information about
these processes, see Andrade-Silva, Zelanis, et al., 2016.

3.2 Raw Data Processing

Raw data was processed using SuperHirn, according to the pipeline described in
Maciel, 2019. SuperHirn is an open-source program that implements a set of tools to
process high-resolution LC-MS data. Prof. Ruedi Aebersold group originally developed this
software at the Institute of Molecular Systems Biology (ETHZ, Switzerland). SuperHirn
is programmed in C++ and is available for Unix platforms. Maciel, 2019 modi�ed the
SuperHirn to add extra functionality required to do phyloproteomic analysis.

For the time being, SuperHirn only supports the mzXML open �le format, introduced
in Pedrioli et al., 2004. The necessary conversion from RAW �les to mzXML was done
using the msconvert program, available in ProteoWizard, an open-source set of tools for
proteomics.

SuperHirn organizes its functionality into modules, divided into two groups: prepro-
cessing and post-processing. Modules must be executed in order, and each one of them
outputs the input for the next one. Moreover, every module output is an XML �le de�ned
by the Annotated Putative Markup Language (APML), an XML-based data format speci�ed
in Brusniak et al., 2008.

The following modules were executed to acquire the seven �nal XML �les:

Preprocessing modules:

1. MS1 feature extraction;

2. Build alignment tree;

3. Multiple LC-MS alignments.

Post-processing modules:

4. MasterMap intensity normalization;

5. Multiple alignments between runs.

https://www.thermofisher.com/
http://tools.proteomecenter.org/wiki/index.php?title=Software:SuperHirn
https://imsb.ethz.ch/research/aebersold.html
https://imsb.ethz.ch/
http://proteowizard.sourceforge.net/
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Preprocessing modules perform MS1 feature extraction, build an alignment tree be-
tween the two runs of the same species, and combine them into a single MasterMap. The
MasterMap is a �le that contains all the necessary information to perform further analysis.
Post-processing modules provide data analysis or other data processing tools that might
be used depending on the analysis intention. The post-processing modules used in this
work normalizes intensity values between all runs that compose a MasterMap, and align
all MasterMaps values. The last module was implemented by Maciel, 2019.

SuperHirn supports parameter calibration to be adaptable to multiple mass spectrome-
ters devices. The modi�ed SuperHirn parameters are listed in Appendix A, and they are
the same parameters used by Maciel, 2019. For detailed algorithmic information about
SuperHirn, see Mueller et al., 2007. SuperHirn manual serves as a quick reference to
SuperHirn installation, con�guration, and execution. More information about SuperHirn
modi�ed version is detailed inMaciel, 2019. This modi�ed version source code is accessible
via the link below:

https://github.com/mergipe/SuperHirn.

An automation module was implemented in this work to handle all SuperHirn-related
tasks to facilitate new analysis. Details about this automation and other general improve-
ments in the pipeline are discussed in Appendix B.

3.3 XML Parsing

The resulting aligned XML MasterMaps were loaded into the Python 3 pipeline automa-
tion software developed for this work. The scripts for parsing and loading the ion maps
were adapted from Maciel, 2019. The pipeline code was refactored in order to decouple it
from the methodology previously implemented, and improve extensibility to facilitate the
implementation of other phyloproteomic analysis methods.

The XML MasterMaps were read by an XMLReader class, which uses the ElementTree
API to parse XML data e�ciently. RT and m/z values are values with two and four decimal
places, ranging from 0 to 120 and 300 to 1,800, respectively. Their values were discretized
by multiplication by powers of ten to use these values as matrix indices.

Next, each parsed MasterMap was loaded into an IonMap class. Due to the discretiza-
tion process, ion maps ended up with gigantic dimensions (12,000 × 15,000,000) with
approximately 12,000 nonzero points. Hence, the IonMap class was designed to store ion
maps in the form of matrices where most elements are zero, namely sparse matrices. SciPy
2-D sparse matrix package was used in this class to build and store the ion maps. It provides
multiple data structures to store and manipulate sparse matrices e�ciently.

3.4 Ion Intensity Maps Partitioning

Hierarchical clustering algorithms build a hierarchy of clusters based on distance
matrices. Most implementations support either a 1D condensed distance matrix or a 2D

https://github.com/GuilhermeVieira/SuperHirn/blob/master/superhirn_user_manual.pdf
https://github.com/mergipe/SuperHirn
https://www.python.org/
https://docs.python.org/3/library/xml.etree.elementtree.html
https://docs.python.org/3/library/xml.etree.elementtree.html
https://docs.scipy.org/doc/scipy/reference/sparse.html
https://docs.scipy.org/doc/scipy/reference/sparse.html
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array of observation vectors as inputs. In the latter option, the implementation receives a
distance metric as a parameter and calculates the distance matrix.

A 2D array was built to be an input to the hierarchical clustering algorithm, where each
row is an observation vector of an ion intensity map. Each index represents a coordinate
(x, y), and the value is the detected intensity. Thus, di�erences in intensity detection at
every point in the matrix can be calculated and compared. However, applying a pairwise
distance metric on every point would be problematic because most points would be
compared to zero intensity detection since ion maps are naturally sparse.

In order to reduce data granularity, ion maps were partitioned into d squared areas.
Information about intensity detection was summarized by summing up intensity values of
each point within an area. These partitioned areas were mapped to a 1D vector representing
the entire ion map, where the indices correspond to an area, and the value is the sum
of intensity values. If ion maps are partitioned in the same number of areas, a pairwise
comparison between intensity values of areas from di�erent ion maps can be made when
building a distance matrix between ion maps.

In this study experiments, the number of partitions d ranged between 1,250 and
1,250,000. Figure 3.2 illustrates a toy example of an ion intensity map partitioned in 42
areas and transformed into a 1D vector.

Figure 3.2: A toy example of ion intensity maps partitioning: ion maps were partitioned in

d = 42 areas and mapped to a 1D vector. Array indices correspond to the areas numbered in red in

the ion map. Intensities values are the sum of intensities detected in the corresponding area.
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3.5 Hierarchical Clustering Analysis and
Bootstrapping

Hierarchical clustering analyses were performed using the pvclust R library with
varying linkage methods and dissimilarity metrics. This library was chosen due to its
capability of validating the clusterings with multiscale bootstrapping resampling. How-
ever, pvclust uses the dist and hclust R libraries to calculate distance matrices and build
hierarchical clusterings, respectively. The high-level interface rpy2 was used to convert
Python objects to R and make R functions available from Python code. In the previous
chapter, Figure 2.7 depicts a plot produced by pvclust that contains p-values for each of
the clusters formed.

The number of bootstrap samples created by pvclust is determined by the nboot
parameter. It was set to nboot = 1000 in every analysis performed since Suzuki and
Shimodaira, 2006 recommends generating at least 1000 for statistical signi�cance. Single,
complete, and average linkage methods were used. The distances used as dissimilarity
metrics are listed in Table 3.1.

Distance Formula Parameters

Euclidean ||u − v||2

u : n-dimensional vector

v: n-dimensional vector

Manhattan ∑
i
|ui − vi |

Canberra ∑
i

|ui − vi |
|ui | + |vi |

Cosine 1 − u ⋅ v
||u||2||v||2

Jaccard

cTF + cFT
cT T + cFT + cTF

where:

cij is the number of occurrences of

u[k] = i and v[k] = j for k < n

u : n-dimensional boolean vector

v: n-dimensional boolean vector

Table 3.1: Dissimilarity metrics used in this work: Adapted from The SciPy community, 2020.

https://cran.r-project.org/web/packages/pvclust/index.html
https://www.r-project.org/
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/dist
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/hclust
https://pypi.org/project/rpy2/
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Chapter 4

Results

Multiple dendrograms were generated using the methodology described in Chapter 3
with varying parameters. This chapter presents a summary of the most relevant phylopro-
teomic trees generated by this methodology. All results are presented using the average
linkage method since di�erent linkage methods did not signi�cantly a�ect the topology of
dendrogram.

Dendrograms generated using Canberra, Cosine, and Jaccard distances qualitatively
converged to the same topology after partitioning by a particular number of areas. A
representative plot of this topology can be seen in Figure 4.1, which is a Canberra distance
dendrogram partitioned in d = 20,000. BP and AU p-values in this �gure reveal high
robustness in all clusters formed.

Nevertheless, dendrograms generated by Lk Norm distances (Manhattan and Euclidean)
are consistent with a ladder-like pattern, no matter how many areas they were parti-
tioned. Figure 4.2 exempli�es the dendrogram pattern found when applying Lk Norm
distances.

After partitioning in d = 625,000 and d = 180,000, Canberra and Jaccard distance
dendrograms respectively converged to the same ladder-like pattern of Lk Norm distances.
In contrast, Cosine distance dendrograms did not converge to the ladder-like pattern in the
experiments, maintaining the representative topology when partitioned in a high number
of areas (Figure 4.6b).

Among Canberra, Cosine, and Jaccard dendrograms, Canberra distance ones were
the most consistent in terms of topology formed. Their topology did not change when
partitioning from d = 1,250 until d = 625,000.

Before stabilizing in the topology shown in Figure 4.4b, Jaccard distance dendrograms
changed intermittently to the one observed in Figure 4.4a. BP and AU p-values indicate that
the formed clusters were not robust. Meanwhile, before converging to the representative
topology, Cosine distance formed robust dendrograms with another topology shown in
Figure 4.6a.
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Figure 4.1: Hierarchical clustering dendrogram of venoms from seven species of the Both-
rops genus validated with bootstrapping: the venom ion map was partitioned in d = 20,000

squared areas. Canberra distance and average linkage method was used to cluster the venom pro�les.

Values over the branches are AU (left, red) and BP (right, green) p-values.



4 | RESULTS

23

Figure 4.2: Hierarchical clustering dendrogram of venoms from seven species of the Both-
rops genus validated with bootstrapping: the venom ion map was partitioned in d = 20,000

squared areas. Euclidean distance and average linkage method was used to cluster the venom pro�les.

Values over the branches are AU (left, red) and BP (right, green) p-values.
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(a)

(b)

Figure 4.3: Hierarchical clustering dendrogram of venoms from seven species of the Both-
rops genus validated with bootstrapping: the venom ion map was partitioned in d = 20,000 (a)

and in d = 45,000 squared areas. Jaccard distance and average linkage method was used to cluster the

venom pro�les. Values over the branches are AU (left, red) and BP (right, green) p-values.
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(a)

(b)

Figure 4.5: Hierarchical clustering dendrograms of venoms from seven species of the Both-
rops genus validated with bootstrapping: the venom ion map was partitioned in d = 45,000 (a)

and in d = 180,000 (b) squared areas. Cosine distance and average linkage method was used to cluster

the venom pro�les. Values over the branches are AU (left, red) and BP (right, green) p-values.
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Chapter 5

Discussion

In this study, hierarchical clustering was utilized to generate phyloproteomic trees
from raw data of venoms of seven Bothrops species measured by LC-MS. It is a direct
continuation of Maciel, 2019, which inferred phyloproteomic trees over raw data from
LC-MS using a Bayesian inference approach.

The predominant topology observed in all generated dendrograms (Figure 4.1) is
similar to the reference phylogram inferred from mitochondrial DNA and morphological
characters (Figure 2.3). The branching pattern witnessed is nearly the same, aside from
B. neuwiedi and B. moojeni. Moreover, B. cotiara position in the tree is consistent with
the polytomy in the reference phylogram. B. neuwiedi was clustered in agreement with
the phylogenetic tree in some dendrograms when using Jaccard distance (Figure 4.4a).
This distance metric measures the dissimilarity between two Boolean arrays. The arrays
used for clustering store the sum of intensities detected in a given area of an ion map. As
a consequence, Jaccard distance discards this sum and only counts as similarity if both
areas had detections or both areas had no detection. Although the cluster formed with B.

erythromelas was not robust, this result suggests that the venom pro�les of these snakes
are more similar when verifying if analogous areas had detections. Phyloproteomic trees
where B. neuwiedi is fully consistent with the genetic phylogram were not reported in
Maciel, 2019. However, Raposo, 2018 found trees where B. neuwiedi and B. erythromelas

are clustered together when using binary peptidic data from whole venom analysis. The
cladograms with this cluster generated by Raposo, 2018 had low posterior probability,
which might be related to the low robustness of these clusters found in this work. This
relationship is a compelling case for future investigation.

The discrepancies regarding B. neuwiedi have been a recurring theme in previous
works. Raposo, 2018 raised two hypotheses to explain these discrepancies to the reference
phylogram. B. neuwiedi has recently undergone a taxonomic revision where its former
subspecies became di�erent species. There is no report about how these species have
contributed to the venom pool used in the LC-MS assays in Andrade-Silva, Zelanis, et al.,
2016. Thus, the �rst hypothesis is that the venom pool might contain individuals of di�erent
species, which may have impacted the consistency of the results. The second hypothesis
concerns the pace of evolutionary pressure on the venom. In short periods, changes
are more likely to occur in the venom composition if there are intense environmental
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pressures on its performance. Hence, these protein pro�les of snake venoms could have
experienced signi�cant alterations in their proteome in a relatively short time, which
explains the fact that cladograms generated from venom pro�les do not perfectly correlate
with phylogenetic trees.

A ladder-like pattern was observed in the dendrograms generated by Lk Norm distances
(Euclidean and Manhattan). This pattern could also be visualized in trees formed using other
distances when the number of ion map partitions increased, aside from Cosine distance. A
possible explanation for these results is the argument stated in Beyer et al., 1997 that under
reasonable conditions, the di�erence between the nearest and the farthest data points
approaches zero as the dimensionality of the problem grows. Hence, the nearest neighbor
problem becomes ill-de�ned and, therefore, meaningless. There was empirical evidence
that this was the case since BP and AU p-values indicate that these clusters are unstable.
Euclidean and Manhattan distances are known to discriminate poorly in high dimensions.
On the other hand, Cosine distance is widely used in high dimensionality problems, such
as measuring document dissimilarity, and it is perceived to be a better discriminator
in high dimensions. Before converging to the predominant topology mentioned earlier,
the dendrograms generated by this distance (Figure 4.6a) were robust and topologically
identical to some phyloproteomic trees generated by Maciel, 2019.
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Conclusion

In this work, a methodology was developed to generate phyloproteomic trees using
hierarchical clustering from raw data measured by LC-MS experiments. This approach
skips intermediate steps as protein and peptide identi�cation that may introduce bias
to the analysis. Furthermore, hierarchical clustering provides results that are simple to
understand and easy to interpret.

Raw LC-MS data was partitioned into squared areas and mapped to 1D arrays. Hierar-
chical clustering analyses were employed over these arrays using di�erent dissimilarity
metrics and linkage methods. The phyloproteomic trees generated were validated with
statistical bootstrapping.

The methodology was tested in pooled venom samples from seven species of the Both-

rops genus. The �ndings rea�rm that cladograms formed from snake venom proteomes
are correlated with phylogenetic trees of these species. Furthermore, results indicate that
using raw data from LC-MS experiments to �nd patterns in proteomic data is a reliable
alternative to peptide and protein identi�cation.

However, some discrepancies between the topologies of phylogenetic and phylopro-
teomic trees have been recurring in previous works. These disparities require further
investigation in future research. In this regard, a possibility is to apply this methodology
into MS-data generated with new venom samples; this would be especially interesting
for the case of B. neuwiedi, which had the most unstable topology in our computational
experiments. Another possibility in this research line would be to apply our methodol-
ogy into other proteomic data rather than snake venoms and benchmark it with other
approaches.
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Appendix A

SuperHirn Con�gurations

Parameter Default Value Modi�ed Value
MS1 retention time tolerance 1.0 2.5
MS1 m/z tolerance 1.0 6
RT end elution window 180.0 120.0
MS1 feature signal to noise threshold 0.5 3.0
MS1 feature intensity cuto� 5000 200
MS1 feature CHRG range min 1 2
MS1 feature CHRG range max 5 9
MS1 feature mz range min 0 300
MS1 feature mz range max 2000 1800
FT peak detect MS1 m/z tolerance 10 6
FT peak detect MS1 intensity min threshold 1000 200
Relative isotope mass precision 10 6
Activation of MS1 feature merging post processing 1 0

Table A.1: SuperHirn parameters that have been modi�ed from their default values: Table

extracted from Maciel, 2019.





33

Appendix B

Software Improvements

This appendix discusses some improvements implemented in the pipeline from a
software engineering perspective.

B.1 Pipeline Containerization
The pipeline implemented in previous works requires processing steps in external

software, such as SuperHirn, for raw data processing of LC-MS experiments, and MrBayes,
for Bayesian inference of phyloproteomic and phylogenetic trees. However, the installation
process of these currently demands a manual compilation for some computer environments.
Also, the main pipeline developed uses several R and Python packages and libraries that
must be individually installed. These complex software requirements add burden to the
end-user and make the developed methodology hard to reproduce, which is crucial for
science.

In order to solve this problem, a containerization solution was applied in this work
using Docker. All software dependencies were packaged into a Docker image. Thus, one
who wishes to reproduce the pipeline only needs a Docker version installed in their
machine and this project image to run this project.

B.2 SuperHirn Wrapper
Raw data processing with SuperHirn is composed of several speci�c steps described in

subsection 3.2. The execution of these steps is monotonous and error-prone. An automation
module was implemented in Python to encapsulate SupeHirn processing steps to the end-
user. This wrapper calls SuperHirn modules and manages their input and output �les. All
these steps occur within the Docker container. In the end, the SuperHirn wrapper copies
the �nal XML �les to the project folder.

http://nbisweden.github.io/MrBayes/
https://www.docker.com/
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