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Abstract

Given two disjoint sets P1 and P2 in R2, a two-dimensional ham sandwich cut is
a line that bisects both P1 and P2 simultaneously. The ham sandwich problem
consists of finding such a line. A linear-time algorithm to solve this problem was
proposed by Chi-Yuan Lo, Jiří Matoušek and William Steiger [7]. We expand on
their paper, detailing the steps needed to implement the algorithm, presenting
pseudocode for most of the steps, and providing some of the knowledge needed to
understand both the algorithm and why it works.

Keywords: Ham sandwich theorem, ham sandwich problem, computational geom-
etry, duality, sorting networks
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Chapter 1

Introduction

The first version of the problem that will be studied in this work was proposed by
the Polish mathematician Steinhaus in 1938 in the popular mathematics publication
Mathesis Polska. The problem inquired: “Is it always possible to bisect three solids,
arbitrarily located, with the aid of an appropriate plane?,” or, in its informal phras-
ing: “Can we place a piece of ham under a meat cutter so that the meat, bone, and
fat are cut in half?”

The answer turned out to be positive, and from that informal analogy came the
name for the more general version of the result: the ham sandwich theorem, that
states that, given n objects in an n-dimensional Euclidean space, there is an (n−1)-
dimensional hyperplane that divides them all in half (with respect to their measure)
simultaneously.

In computational geometry certain particular cases have been studied. Generally,
the goal is to find such hyperplane, and the task of doing so is called the ham sandwich
problem. The problem has been more extensively studied for the particular case of
when the objects are sets of points.

The problem mentioned has application on other computational geometry algo-
rithms, such as finding the regression depth of a hyperplane with respect to a set of
points, as described in [2].

In 1984 Meggido devised an algorithm, described in [9], to solve in linear time the
two dimensional ham sandwich problem when the two sets of points are separated,
i.e., when their convex hulls do not intersect.

A very important result for the problem followed: a paper published in 1994 in
the Discrete and Computational Geometry journal, by Lo, Matoušek, and Steiger,
which solves this discrete version of the problem in O(nd−1) time, where n is the total
number of points and d is the number of dimensions of the space those points are in
and also the number of sets of points. This paper heavily relies on multiple previous
studies in sorting networks and how they can be applied to line arrangements, such
as [8] and [4].

The algorithm described by Lo, Matoušek, and Steiger is quite intricate, so this
work is mainly focused on explaining their linear algorithm for the two-dimensional
case of the discrete version of the problem.

On Chapter 2, we will establish some basic ideas that will be needed to understand
the approach used by Lo, Matoušek, and Steiger in [7]. On Chapter 3, we will
describe in detail their linear algorithm, using a simpler algorithm to substitute the
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2 CHAPTER 1. INTRODUCTION

one described in [8] to find a suitable line intersection given the problem constraints,
resulting in an O(n log n) algorithm. On Chapter 4, we will explain sorting networks,
a structure that is needed for the linear algorithm. On Chapter 5, we will describe the
steps proposed by Matoušek in [8] to make the previous algorithm linear. Finally, on
Chapter 6, we will outline the final results and what we could draw from this work.



Chapter 2

The discrete ham sandwich
problem

In this section we will establish some definitions needed to fully understand the
problem and the algorithms that will be described. We will also formalize some of
the notions that were mentioned in the introduction, including the definition of the
problem itself.

All given sets of points and lines we consider are finite. We also consider all
points and lines to be in general position.

2.1 Ham sandwich cuts

Definition 1. A line ` is said to bisect the set P of points in R2 if no more than |P |2
points of P lie on either of the open half-planes defined by ` (Figure 2.1).

Figure 2.1: In all the images above, the line bisects the set of points.

Let the pair (x, y) represent a point and the equation y = m · x + b represent
a line. Note that vertical lines do not have such representation. From now on, the
term line always refers to non-vertical lines.

We can easily check if such a line bisects a set of points in linear time using
Algorithm 1.

3



4 CHAPTER 2. THE DISCRETE HAM SANDWICH PROBLEM

Algorithm 1 Bisects(`, P )
Input: a line ` and a set P of points
Output: true if ` bisects P and false otherwise
1: below ← 0
2: above← 0
3: for p ∈ P do
4: if p.y < `.m · p.x+ `.b then below ← below + 1

5: if p.y > `.m · p.x+ `.b then above← above+ 1

6: return below ≤ |P |2 and above ≤ |P |2

Definition 2. A ham sandwich cut for two sets P1 and P2 of points in R2 is a line
that bisects both P1 and P2 simultaneously (Figure 2.2).

Figure 2.2: The points in red (filled) are in P1 and the points in blue (not filled) are
in P2. The lines are ham sandwich cuts for P1 and P2.

Problem 1 (Two-Dimensional Discrete Ham Sandwich Problem). Given two sets
P1 and P2 of points in R2, find a ham sandwich cut for P1 and P2.

It is not intuitive, but such a cut always exists. In Section 2.3 we will show a
constructive proof that uses some of the same ideas of the algorithm this work aims
to describe. Although there are simpler proofs of the existence of a ham sandwich
cut, they do not help with finding the cut itself and will not be mentioned.

We can make further observations on the problem that will help with its solution.

Proposition 1. Let P be a set of points in R2 such that |P | is odd and ` be a line
that bisects P . There is a point in P that lies on `.

Proof. By definition, any line that bisects P must leave no more than |P |2 points on
either of its sides. Since the number of points that lie strictly on some side of ` is
always an integer, that line must leave no more than

⌊
|P |
2

⌋
= |P |−1

2 points on either
side. So we have a maximum of |P |−1 points that lie strictly on any side of `. Thus,
at least one point of P has to lie on `.

Proposition 2. Let P be a set of points in R2 such that |P | is even. For every point
x ∈ P , any line that bisects P \ {x} also bisects P .
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Proof. Since |P | is even, |P \ {x}| is odd. Let ` be a line that bisects P \ {x}.
From Proposition 1, at least one point from P \ {x} lies on `. Therefore, at most
|P\{x}|−1

2 = |P |−2
2 points lie on either side of `. So, no matter where x lies, at most |P |2

points will lie on either side of `, which, by definition, implies that ` bisects P .

From Proposition 2, we may assume without loss of generality that both P1

and P2 have an odd number of points. Otherwise, we can just remove any point
from the even sets and a solution to the modified instance will also be a solution to
the original instance. Now Proposition 1, along with the fact that a ham sandwich
cut always exists, can give us a powerful observation: there always exists a ham
sandwich cut that goes through at least one point from P1 and one point from P2.
That gives us a naive O(n3) algorithm (where n = |P1| + |P2|) briefly described
ahead, to solve Problem 1.

Algorithm 2 goes through every point in P1 and every point in P2 and checks
if the line that passes through both of these points is a ham sandwich cut. This
is done by using the function Bisects, that was defined in Algorithm 1. Since the
points are in general position, there are no two points in P1 and P2 with the same
x-coordinate. So any line defined by two points can be represented by an equation
of the type y = mx+ b.

Algorithm 2 NaiveSolve(P1, P2)
Input: two nonempty sets P1 and P2 of points in general position
Output: a ham sandwich cut for P1 and P2

1: for p1 ∈ P1 do
2: for p2 ∈ P2 do
3: m← p2.y−p1.y

p1.x−p2.x
4: b← p1.y −m · p1.x
5: `← (y = mx+ b) B line that contains p1 and p2
6: if Bisects(`, P1) and Bisects(`, P2) then return `

An optimization can be done to reduce the running time of Algorithm 2
from O(n3) to O(n2 log n). To do so, one can keep three lists: the list of all the
pairs of points in P1 ∪P2, sorted by the slope of the line that contains them, the list
of points in P1 sorted by x-coordinate, and the list of the points in P2 also sorted by
x-coordinate.

The idea is that, every time we go through a potential ham sandwich cut, we will
have the points in P1 and P2 sorted in the direction of the line perpendicular to that
cut, so it is possible to check in constant time if the current cut is a ham sandwich
cut or not.

Roughly, we process the pairs of points in order of slope and do the following: if
the points in the current pair belong to the same initial set, we swap their positions
in the corresponding list of points of that set. Otherwise we have a potential ham
sandwich cut and we check if both points are in the middle of their respective lists.

The resulting complexity is that of sorting the list of all pairs of points, that is,
O(n2 log n).
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2.2 Duality

When dealing with lines and slopes, things can get cumbersome very quickly. It is
sometimes helpful to be able to look at certain problems from a different perspective
and the insights might be clearer. To help with that, we will now introduce the idea
of plane duality.

A certain symmetry can be seen between points and lines in a plane. Some
properties translate really well from points to lines and vice-versa. This is partially
due to the fact that both of those structures can be described by two parameters:
the points by their coordinates and the lines by their slope and intersection with the
y-axis.

We want to find a mapping from points to lines and lines to points that translates
well some properties. For instance, three points on a line would become three lines
through a point. These mappings are called duality transforms. The image of an
object under a duality transform is called the dual of that object.

The duality transform we will use is the following. Let p := (px, py) be a point
in the plane. The dual of p will be the line p∗ := (y = px · x − py). The dual of a
line ` := (y = m · x+ b) will be the point p such that p∗ = `, which is `∗ := (m,−b)
(Figure 2.3).

`1

`2

`3
`4

p

Primal plane

p∗

`∗1

`∗2

`∗3

`∗4

Dual plane

Figure 2.3: An example of plane duality.

We are interested in certain properties that, if held in the primal plane, also hold
in the dual plane.

Proposition 3. A point p lies on a line ` if and only if the point `∗ lies on the
line p∗.

Proof. Let p := (px, py) and ` := (y = m · x + b). Then p lies on ` if and only if
py = m · px + b. We can rewrite that equation to be −b = px ·m− py, which means
that `∗ := (m,−b) lies on p∗ := (y = px · x− py).

Proposition 4. A point p lies above a line ` if and only if the point `∗ lies above
the line p∗.
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Proof. Let p := (px, py) and ` := (y = m · x + b). Then p lies above ` if and only if
py > m · px + b. We can rewrite that equation to be −b > px ·m− py, which means
that `∗ := (m,−b) lies above p∗ := (y = px · x− py).

Let us translate some definitions so that we can translate Problem 1 to its dual
version. Firstly, we will define what is a point that is in the median zone of a set of
lines, which is the dual of a line bisecting a set of points.

Definition 3. A point p is said to be in the median zone of a set H of lines if there
are no more than |H|2 lines above it and no more than |H|2 lines below it.

Similarly to Algorithm 1, that checks if a line bisects a set of points, we can write
a simple linear-time algorithm to check if a point p is in the median zone of a set H
of lines.

Algorithm 3 MedianZone(p, H)
Input: a point p and a set H of lines
Output: true if p is in the median zone of H and false otherwise
1: below ← 0
2: above← 0
3: for h ∈ H do
4: if p.y < h.m · p.x+ h.b then below ← below + 1

5: if p.y > h.m · p.x+ h.b then above← above+ 1

6: return below ≤ |H|2 and above ≤ |H|2

We will also need to define a ham sandwich point, which is the dual of a ham
sandwich cut.

Definition 4. A ham sandwich point for two sets H1 and H2 of lines is a point that
is in the median zone of H1 and H2 simultaneously (Figure 2.4).

Figure 2.4: The lines in red (solid) represent H1 and the lines in blue (dashed)
represent H2. The marked points are ham sandwich points for H1 and H2.

With that we can define the dual two-dimensional ham sandwich problem, which
is the dual of Problem 1.

Problem 2 (Dual Two-Dimensional Ham Sandwich Problem). Given two sets H1

and H2 of lines in R2, find a ham sandwich point for H1 and H2.
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It can be proven that, if the lines are in general position, such a point always
exists, so we would like to find it as efficiently as possible. If there are parallel lines,
such point might not exist, which is the case for the examples in Figure 2.5. This is
due to the dual conversion of the problem. This representation does not allow points
that are the dual of vertical lines, and these lines might be the only solution for the
primal problem.

Figure 2.5: The lines in red (solid) represent H1 and the lines in blue (dashed)
represent H2. There is no ham sandwich point for H1 and H2.

Proposition 5. In general position, Problem 1 and Problem 2 are equivalent. In
other words, a line ` is a ham sandwich cut for the sets P1 and P2 of points in general
position if and only if the point `∗ is a ham sandwich point for the sets P ∗1 and P ∗2
of lines (Figure 2.6).

Proof. By Proposition 4, a line ` bisects a set P of points if and only if `∗ is in the
median zone of P ∗. That way, a line ` is a ham sandwich cut for the sets P1 and P2

of points if and only if `∗ is a ham sandwich point for the sets P ∗1 and P ∗2 of lines.

`1

`2

`3

Primal plane

`∗1 `∗2 `∗3

Dual plane

Figure 2.6: The same instance of the ham sandwich problem both in the primal and
in the dual plane. For 1 ≤ i ≤ 3, line `i and point `∗i represent possible solutions in
their respective planes.

To solve Problem 2 in general position, similarly to Problem 1, we may assume
that the number of lines in both sets is odd. That way, the point that corresponds
to a solution will be the intersection of a line in H1 and a line in H2.
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That gives us a naive solution to Problem 2, presented in Algorithm 4: go through
all intersections of two lines and check if each intersection is a ham sandwich point.

Algorithm 4 DualNaiveSolve(H1, H2)
Input: two nonempty sets H1 and H2 of lines in general position
Output: a ham sandwich point p of H1 and H2

1: for h1 ∈ H1 do
2: for h2 ∈ H2 do
3: x← h2.b−h1.b

h1.m−h2.m
4: y ← h1.m · x+ h1.b
5: p← (x, y) B intersection of h1 and h2
6: if MedianZone(p, H1) and MedianZone(p, H2) then return p

Algorithm 4 just happens to be Algorithm 2 converted to the dual plane. It can
also be optimized to run in O(n2 log n) time (where n = |H1| + |H2|), but, in the
dual plane, the optimized version, shown in Algorithm 5, is a sweep line algorithm
that is much easier to visualize.

The algorithm sweeps the plane from left to right, keeping the order in which the
red and the blue lines intersect the sweep line. Initially, the lines intersect the sweep
line in order of their slopes. This order changes every time the sweep line passes by
an intersection of two lines of the same set. Intersections of two lines of different sets
are candidates to ham sandwich points, so the events of this sweep line algorithm
are the intersections of pairs of the given lines. These intersections are processed in
order of their x-coordinate.

Intersections of lines of the same set cause the order of the intersection of these
lines with the sweep line to invert. Intersections of lines of different sets are tested
to see if they are a ham sandwich point. For this test to be made efficiently, the
algorithm keeps track of the position of each line in the order of intersection of all
lines of its set with the sweep line. To decide whether an intersection of two lines of
different sets is a ham sandwich point, it is enough to check whether both lines are
in the middle position of their respective color order.

In Algorithm 5, the procedure SlopeSort(H) sorts the list H of lines by slope
in O(n log n) time, where n = |H|. The procedure IntersectionSort receives two
sets H1 and H2 of lines in general position and returns a list of all pairs of lines
in H1 ∪H2, sorted by the x-coordinate of the intersection of the lines. Each line is
identified by an integer i in {1, 2} and the index of the line in Hi. This procedure
runs in O(n2 log n), where n = |H1|+ |H2|.

The complexity of Algorithm 5 is that of IntersectionSort(H1, H2), that is,
O(n2 log n). Both this and the primal O(n2 log n) algorithm were described with the
intent of showing that visualizing the problem in its dual plane can simplify certain
algorithms.
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Algorithm 5 OptimizedDualNaiveSolve(H1, H2)
Input: two nonempty sets H1 and H2 of lines in general position
Output: a ham sandwich point p for H1 and H2

1: if |H1| is even then remove an arbitrary line of H1

2: if |H2| is even then remove an arbitrary line of H2

3: SlopeSort(H1) B H1[1].m < · · · < H1[|H1|].m
4: π1 ← (1, . . . , |H1|)
5: SlopeSort(H2) B H2[1].m < · · · < H2[|H2|].m
6: π2 ← (1, . . . , |H2|)
7: B Order of the intersection with the sweep line: Hi[πi[1]]≺ · · ·≺Hi[πi[|Hi|]] for i=1, 2

8: Events ← IntersectionSort(H1, H2)

9: t1 ←
⌈
|H1|
2

⌉
10: t2 ←

⌈
|H2|
2

⌉
11: for {(i, j), (i′, j′)} ∈ Events do
12: if i = i′ then B both lines are in the same Hi?
13: πi[j]↔ πi[j

′] B they exchange places in the order ≺
14: else B check whether the intersection is a ham sandwich point
15: if πi[j] = ti and πi′ [j

′] = ti′ then B both lines are in the median zone?
16: x← H1[t1].b−H2[t2].b

H2[t2].m−H1[t1].m

17: y ← H1[t1].m · x+H1[t1].b B their intersection
18: return (x, y)

2.3 Existence of a ham sandwich cut

The duality transformation also makes it easier to prove that there is always a solu-
tion to the ham sandwich problem.

Firstly, we will assume that the points in P1 and P2 are in general position, which
implies that every pair of lines in P ∗1 and P ∗2 intersects at exactly one point and there
are no vertical lines. We will also assume that both |P1| and |P2| are odd.

To prove the existence of a ham sandwich cut, we will need to make some extra
observations.

Proposition 6. The median zone of an odd set of lines is a polygonal chain (Fig-
ure 2.7).

Proof. Let H be an odd set of lines. Since |H| is odd, a point in the median zone
of H must lay on a line of H. Furthermore, given the x-coordinate of the point,
there is only one candidate for its y-coordinate: the one determined by a line that is
in the middle when we sort H by evaluation at such x-coordinate.

Notice that the line that represents the median zone only changes when that line
intersects with the next median line; that other line will now be the one to represent
the median zone. That means that the median zone is a connected series of line
segments, i.e., a polygonal chain.
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Figure 2.7: The darker polygonal chain is the median zone of the set of lines displayed.

Definition 5. The i-th level of a set H of lines, denoted as Li(H), is the polygonal
chain such that there are at most i − 1 lines of H strictly below Li(H) and at most
|H| − i lines of H strictly above Li(H).

Note that the median level of an odd set H of lines, L⌈
|H|
2

⌉(H), is the median

zone of H, as it was defined previously.

Now let P1 and P2 be the sets of points in general position for which we want
to find a ham sandwich cut. We are looking for a line that bisects both P1 and P2,
which is the same as a point that is in the median zone of both P ∗1 and P ∗2 . If P1

and P2 are odd, that means we want to find an intersection of the median levels of
both. If that intersection exists, then it is the dual of a ham sandwich cut.

Lemma 1. Let H1 and H2 be two odd sets of lines in general position. Their median
levels intersect at an odd number of points (Figure 2.8).

Proof. The left unbounded ray and the right unbounded ray of the median level of
any odd set of lines in general position lie on the same line: the line that is the median
in the slope order. Let us say such line is h1 for H1 and h2 for H2. Because the
lines are in general position, one of them must have a smaller slope. Let us assume
without loss of generality that this is h1. That means that, for small enough x,
h1(x) > h2(x) and the median level of H1 is above the median level of H2 and, for
large enough x, h1(x) < h2(x) and the median level of H1 is below the median level
of H2. By continuity, the median levels intersect an odd number of times.
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Figure 2.8: The red (solid) lines represent H1, the blue (dashed) lines represent H2.
The thicker lines represent the median level of each set and the points represent
where those median levels intersect.

If the set of lines is not in general position, the lines in which the median levels
lay on might be parallel. In those cases, the median level of the two sets of lines do
not necessarily intersect and there might be no solution for the problem (Figure 2.9).

Figure 2.9: When the median levels of the sets of lines are parallel, their median
levels may or may not intersect.

Now we can finally prove the result.

Theorem 1. Given two sets P1 and P2 of points in R2 in general position, there
always exists a line that bisects both sets P1 and P2 simultaneously.

Proof. By Proposition 2 we may assume both sets of points are odd, as otherwise
we can just remove any point from the even sets and the solution found will still be
applicable.

By Proposition 5, it is enough to find a ham sandwich point p for H1 := P ∗1
and H2 := P ∗2 , if one such point exists.

From Lemma 1, the median levels of H1 and H2 intersect an odd number of
times, which is necessarily a positive number of times. That means there is a point p
that is in both the median level of H1 and in the median level of H2, so p is a ham
sandwich point. The dual of p is a line that bisects both sets.



Chapter 3

Lo, Matoušek, and Steiger
algorithm

This chapter presents an algorithm, proposed by Lo, Matoušek, and Steiger [7], that
solves Problem 2. Their algorithm has a linear-time implementation. By Proposi-
tion 5, it can be easily converted to an algorithm with the same running time for
Problem 1.

In this chapter, we will describe an O(n log n) implementation for their algorithm,
where n is given number of lines, that is, n = |H1| + |H2|. We will postpone the
most intricate part of the linear-time implementation to Chapter 5.

We reinforce that we are assuming that the lines are in general position. This
means the algorithm will always find a solution.

3.1 Outline of the algorithm

The algorithm will search for an intersection between the median zones of our two
sets of lines, H1 and H2. In our description, we will use the following definitions.

Definition 6. Let T be an open interval on the x-axis. A T -intersection is an
intersection between two lines whose x-coordinate lies in T .

Definition 7. Let T be an open interval on the x-axis. A T-trapezoid is a trapezoid
that has two sides parallel to the y-axis, the first of which is a segment contained in
the vertical line defined by the beginning of T and the second of which is a segment
contained in the vertical line defined by the end of T .

Definition 8. Let T be an open interval on the x-axis, G1 and G2 be sets of lines,
and p1 and p2 be integers such that 1 ≤ pi ≤ |Gi|. Interval T has the odd intersection
property in relation to Lp1(G1) and Lp2(G2) if Lp1(G1) and Lp2(G2) intersect an odd
number of times in T .

The basic idea of the algorithm is to find subsets G1 ⊆ H1 and G2 ⊆ H2 in such
a way that there is at least one intersection of the median levels of H1 and H2 that
is also an intersection of a line in G1 and a line in G2. We will remove lines from
G1 and G2 in phases while maintaining this property, and once |G1|+ |G2| is small
enough, we will find a solution using some naive algorithm.

13
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The algorithm will work in phases. At the beginning of each phase, the algorithm
will have the following data:

• current sets G1 and G2 of lines, with Gi ⊆ Hi;

• integers p1 and p2, with 1 ≤ pi ≤ |Gi|, and

• an open interval T on the x-axis that has the odd intersection property in
relation to Lp1(G1) and Lp2(G2).

These are such that all T -intersections between Lp1(G1) and Lp2(G2) are valid
ham sandwich points for H1 and H2. The algorithm will also use a constant α, whose
value we will define later.

At the end of each phase, lines are discarded so we have new sets G′i ⊆ Gi,
integers p′i ≤ pi such that 1 ≤ p′i ≤ |G′i|, and a new interval T ′ ⊆ T on which
the invariant holds for the new data. To maintain the time complexity of the final
algorithm equal to the time complexity of one of its phases, the larger of Gi will have
its size cut by some fraction that is determined by the constant α.

To start the algorithm, T is the whole x-axis, Gi = Hi and pi =
⌈
|Hi|
2

⌉
. To

perform one of the phases, we will execute the following steps, always ensuring be-
forehand that |G1| ≥ |G2| (otherwise we swap G1 and G2).

1. Find an interval T ′ ⊆ T so that there are no more than α
(|G1|

2

)
T ′-intersections

among the lines in G1 and T ′ has the odd intersection property in relation to
Lp1(G1) and Lp2(G2). Let T ′ be the new T .

This step will be represented by the function NewInterval(G1, G2, p1, p2, T )
(Section 3.2), which returns the new interval T ′ given the parameters as stated
above.

2. Construct a T -trapezoid τ that contains the entirety of Lp1(G1) in T and
intersects only a certain predetermined fraction of lines in G1. This fraction is
determined by α and its value is chosen so that such a τ always exists.

This step will be represented by the function FindTrapezoid(G1, p1, T ) (Sec-
tion 3.3), which returns the T -trapezoid τ .

3. Discard all the lines in G1 that do not intersect τ and update p1 accordingly.

This step will be represented by the function DiscardLines(G1, p1, τ) (Sec-
tion 3.4), which returns G′1 and p′1 according to what was described.

If we use α = 1
32 in Step 2, at the end of the phase, G1 will have its size cut by

at least half [7, Lemma 3.5]. Once the size of G1 is smaller than some constant, we
can use some naive algorithm to find a T -intersection of Lp1(G1) and Lp2(G2). This
algorithm will be BruteForce(G1, G2, p1, p2, T ) (Section 3.5).

Since |G1| ≥ |G2| and |G1| decreases by half by the end of each phase, |G1|+ |G2|
decreases to at most 3

4 of its previous value by the end of each phase. As long as
each phase takes time O(|G1| + |G2|), the total time for this procedure will be a
geometric progression (|H1|+ |H2|) + 3

4(|H1|+ |H2|) + (34)2(|H1|+ |H2|) + . . . , which
is O(|H1|+ |H2|) = O(n).
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The algorithm that solves the actual problem is presented in Algorithm 6 and the
figures that follow represent what one of its phases might look like (lines 9 to 12). In
the figures we use an α greater than 1

32 to make it easier to visualize the lines. As a
consequence, less than half of the lines will be discarded in Step 3.

Algorithm 6 HamSandwichPoint(G1, G2)
Input: two nonempty sets G1 and G2 of lines in general position
Output: a point that is in the intersection of the median zones of G1 and G2

1: α← 1
32

2: if |G1| is even then remove any line from G1

3: if |G2| is even then remove any line from G2

4: if |G2| > |G1| then G1 ↔ G2 B ensuring |G1| ≥ |G2|
5: p1 ←

⌈
|G1|
2

⌉
6: p2 ←

⌈
|G2|
2

⌉
7: T ← (−∞,∞)
8: while

(|G1|
2

)
> 1

α do
9: T ← NewInterval(G1, G2, p1, p2, T )

10: τ ←FindTrapezoid(G1, p1, T )
11: (G1, p1)←DiscardLines(G1, p1, τ)
12: if |G2| > |G1| then (G1, p1)↔ (G2, p2) B ensuring |G1| ≥ |G2|
13: return BruteForce(G1, G2, p1, p2, T ) B |G1| and |G2| are sufficiently small

Figure 3.1: An instance of the Dual 2D Ham Sandwich Problem:
the lines in red (solid) represent H1 and the lines in blue (dashed) represent H2.
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Figure 3.2: The parameters at the beginning of the algorithm: T is the whole x-axis,
G1 = H1, G2 = H2, p1 = 3 and p2 = 2. The thicker lines show the levels Lp1(G1)
and Lp2(G2).

Figure 3.3: The two green (dotted) lines indicate interval T ′, found in Step 1, contain-
ing only a fraction of the intersections from G1 and an odd number of intersections
between L3(G1) and L2(G2).

Figure 3.4: In Step 2, we construct the T -trapezoid τ that contains the entirety
of Lp1(G1) in T .
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Figure 3.5: In Step 3, we eliminate the red (solid) lines that do not intersect τ .

Figure 3.6: Now we are ready to the next phase. Our new G1 is the current set of
lines in red (solid) and our new G2 is the current set of lines in blue (dashed). The
new interval T is the range delimited by the green (dotted) lines. We now want to
find a T -intersection between the levels Lp1=2(G1) and Lp2=2(G2). We do not need
to swap the sets because |G1| ≥ |G2|.

In the following sections, the subroutines used in Algorithm 6 will be explained
in details.

3.2 New interval

For didactic purposes, this section will discuss an O((|G1| + |G2|) log(|G1| + |G2|))
expected time implementation of the function NewInterval. This complexity is
insufficient for the linear-time implementation of Lo, Matoušek, and Steiger algo-
rithm. A worst-case linear implementation will be described in Chapter 5 and uses
some of the ideas that will be introduced here.

The function NewInterval receives two sets G1 and G2 of lines, integers p1
and p2 with 1 ≤ pi ≤ |Gi|, and an interval T that has the odd intersection property
in relation to Lp1(G1) and Lp2(G2). The function returns an interval T ′ ⊂ T that has
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the odd intersection property in relation to Lp1(G1) and Lp2(G2) and such that the
number of T ′-intersections among lines in G1 is no more than α

(|G1|
2

)
(for α = 1

32).
We will find the new interval T ′ by performing a binary search in the T -

intersections among lines in G1.
The algorithm will execute the following steps:

1.1 Choose a T -intersection among lines in G1 uniformly at random. The x-
coordinate of that intersection divides T into two intervals: T1, consisting
of the part of T that is to the left of this coordinate, and T2, consisting of the
part of T that is to the right of this coordinate.

1.2 Update T to be the one between T1 and T2 in which Lp1(G1) and Lp2(G2)
intersect an odd number of times.

1.3 If the number of T -intersections among lines in G1 is greater than α
(|G1|

2

)
, go

back to Step 1.1.

Both Step 1.1 and Step 1.3 will be done using the O(|G| log |G|) function
IntersectionsAndRandomIntersection(G,T ), which returns the number of T -
intersections among lines in G and a random T -intersection, if one exists. Step 1.2
will be done using the function OddIntersectionProperty(G1, G2, p1, p2, T ),
that checks whether T has the odd intersection property in relation to Lp1(G1)
and Lp2(G2) in O((|G1|+ |G2|) log(|G1|+ |G2|)).

Once we have the functions IntersectionsAndRandomIntersection and
OddIntersectionProperty, NewInterval can be written as in Algorithm 7.

Algorithm 7 NewInterval(G1, G2, p1, p2, T )

Input: two sets G1 and G2 of lines in general position, two integers p1 and p2 with
1 ≤ pi ≤ |Gi|, and an interval T that has the odd intersection property in relation
to Lp1(G1) and Lp2(G2)

Output: an interval T ′ ⊂ T such that the number of T ′-intersections among the
lines in G1 is no more than α

(|G1|
2

)
(for α = 1

32) and T
′ has the odd intersection

property in relation to Lp1(G1) and Lp2(G2)
1: α← 1

32
2: (n, p)←IntersectionsAndRandomIntersection(G1,T )
3: while n > α

(|G1|
2

)
do

4: (a, b)← T
5: T1 ← (a, p.x)
6: T2 ← (p.x, b)
7: if OddIntersectionProperty(G1,G2,p1,p2,T1) then T ← T1
8: else T ← T2
9: (n, p)←IntersectionsAndRandomIntersection(G1,T )

10: return T
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To calculate the running time, we need to determine how many iterations the
while in line 3 will execute. By selecting a random T -intersection within G1 in
lines 2 and 9, one can prove that the expected number of T -intersections within G1

decreases by some fraction in each iteration. That means that we need on average a
constant number of iterations until the number of T -intersections within G1 is small
enough, so the algorithm takes on average O((|G1|+ |G2|) log(|G1|+ |G2|)) time.

3.2.1 Finding intersections

We will find T -intersections in a set G of lines using the concept of inversions. For
a permutation π, a pair of indices i and j with 1 ≤ i ≤ j ≤ |π| is an inversion if
π[i] > π[j].

If we have two lines g1 and g2 in G such that, at the beginning of the interval T ,
the evaluation of g1 is greater than the evaluation of g2 and, at the end of T , the
evaluation of g1 is smaller than the evaluation of g2, then g1 and g2 must intersect
inside T .

So let us say we label the lines in G from 1 to n in the order of their evaluation at
the beginning of T . We will define π as the permutation that represents the lines in
the order of their evaluation at the end of T . Because of what was described above,
each inversion in π will be a T -intersection of two lines in G (Figure 3.7).

5
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1

1

2

4

5

3

Figure 3.7: Each inversion in the permutation displayed at the right represents an
intersection of two lines inside the interval.

That way, we can use variants of inversion counting algorithms to implement
IntersectionsAndRandomIntersection. This will be done using Algorithm 9,
which transforms the lines into a permutation and then uses Algorithm 8, which
counts the inversions in a permutation and returns one chosen uniformly at random.

Algorithm 8 runs in O(n log n) time, where n = j − i+ 1, as it is an adaptation
of the well-known Mergesort algorithm for counting inversions. It uses the procedure
rand(i, j), that returns an integer in the interval [i, j) uniformly chosen at random.

Algorithm 9 uses as subroutines the procedure SortEval(G, z), that sorts the
set G of lines by increasing value of g(z) for each line g ∈ G and the procedure
IndSortEval(G, z), that returns the permutation that sorts G by increasing value
of g(z) for each line g ∈ G. In case of ties, the line with larger slope is considered
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greater. That is as if the lines have already intersected, so it is as if we were actually
sorting by increasing value of g(z + ε) for a tiny ε > 0. For z = −∞, the sorting
is by decreasing slope and, for z = ∞, by increasing slope of the lines in G. Both
procedures run in O(|G| log |G|) time.

Algorithm 8 InversionsAndRandomInversion(π, i, j)

Input: a permutation π and integers i and j with 1 ≤ i ≤ j ≤ |π|
Output: the number of inversions in π[i . . j] and a random pair of integers inverted

in π[i . . j], if one exists. As a side effect, the algorithm sorts π[i . . j].
1: if i ≥ j then return (0, none,none)
2: k ←

⌊
i+j
2

⌋
3: (c1, u1, v1)← InversionsAndRandomInversion(π, i, k)
4: (c2, u2, v2)← InversionsAndRandomInversion(π, k + 1, j)
5: c3 ← 0 B inversions between the two now sorted halves of π
6: t1 ← i, t2 ← k + 1
7: for t ∈ [i, j] do B similar to the Merge subroutine of Mergesort
8: if (t1 ≤ k and t2 ≤ j and π[t1] < π[t2]) or t2 > j then
9: π′[t]← π[t1]

10: t1 ← t1 + 1
11: else
12: c3 ← c3 + k − t1 + 1
13: if c3 > 0 then
14: r ← rand(0, c3)
15: if r < k − t1 + 1 then u3, v3 ← π[t2], π[t1 + r]
16: π′[t]← π[t2]
17: t2 ← t2 + 1
18: for t ∈ [i, j] do π[t]← π′[t]
19: c← c1 + c2 + c3
20: if c = 0 then return (0, none, none)
21: r ← rand(0, c)
22: if r < c1 then return (c, u1, v1)
23: if r < c1 + c2 then return (c, u2, v2)
24: return (c, u3, v3)

Algorithm 9 IntersectionsAndRandomIntersection(G,T )

Input: a set G of lines in general position and an interval T
Output: the number of T -intersections of lines in G and a random T -intersection

of two lines in G
1: (a, b)← T
2: SortEval(G, a) B G[1] ≺a · · · ≺a G[|G|]
3: π ← IndSortEval(G, b) B G[π[1]] ≺b · · · ≺b G[π[|G|]]
4: (c, u, v)← InversionsAndRandomInversion(π, 1, |π|)
5: if c = 0 then return (c,none,none)

6: inter ← intersection(G[u], G[v])
7: return (c, inter)
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3.2.2 Checking the odd intersection property

To decide if an interval has the odd intersection property in relation to Lp1(G1)
and Lp2(G2), we only have to check whether Lp1(G1) and Lp2(G2) changed order in
that interval (e.g., Lp1(G1) was below Lp2(G2) at the beginning of the interval but
above it at the end of the interval: by continuity, they must have intersected an odd
number of times), which is what we do in Algorithm 10.

We will determine what is the p-th line of a set of n lines when it is sorted by in-
creasing evaluation at a given x using an O(n) function Quickselect(G, p, x). The
linear-time version of Quickselect uses the median of medians of five algorithm
proposed by Blum et al. [3]. With that, OddIntersectionProperty has a final
complexity of O(|G1|+ |G2|), which is important because we will be using it later in
the linear-time implementation of the NewInterval function.

Algorithm 10 OddIntersectionProperty(G1, G2, p1, p2, T )

Input: sets G1 and G2 of lines in general position, integers p1 and p2 with 1≤pi≤|Gi|
and an interval T

Output: true if Lp1(G1) and Lp2(G2) intersect an odd number of times in T and
false otherwise

1: if T is empty then
2: return false
3: (a, b)← T
4: g1 ← Quickselect(G1, p1, a) B Lp1(G1) at x = a is on line g1
5: g2 ← Quickselect(G2, p2, a) B Lp2(G2) at x = a it on line g2
6: ordera ← g1(a) < g2(a) B true iff Lp1(G1) is below Lp2(G2) at x = a

7: g1 ← Quickselect(G1, p1, b) B Lp1(G1) at x = b is on line g1
8: g2 ← Quickselect(G2, p2, b) B Lp2(G2) at x = b is on line g1
9: order b ← g1(b) < g2(b) B true iff Lp1(G1) is below Lp2(G2) at x = b

10: return ordera 6= order b

Here we will present a version of Quickselect that has expected linear time but
is better in practice. It consists of a recursive algorithm presented in Algorithm 12.
that works by selecting a random pivot in the given range and then determining
whether the number we are looking for is located before or after the pivot, and
recursively solving the problem for the desired side of the pivot. For the recursion,
two parameters i and j are added, to indicate that the set of lines for the current
call is G[i . . j]. Then Quickselect(G, p, x), shown in Algorithm 11, simply returns
the result of the call QuickselectRec(G, 1, |G|, p, x), and has expected linear-time
complexity, but its worst case is O(|G|2).

Algorithm 11 Quickselect(G, p, x)

Input: a set G of lines, an index p such that 1 ≤ p ≤ i− j + 1, and a coordinate x
Output: the p-th line of G when sorted by increasing evaluation at x
1: return QuickselectRec(G, 1, |G|, p, x)
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Algorithm 12 QuickselectRec(G, i, j, p, x)

Input: a set G of lines, indices i and j such that 1 ≤ i ≤ j ≤ |G|, an index p such
that 1 ≤ p ≤ i− j + 1, and a coordinate x

Output: the p-th line of G[i . . j] when sorted by increasing evaluation at x
1: r ← rand(i, j + 1)
2: id← i
3: G[r]↔ G[j]
4: for k ∈ (i, j) do
5: if G[k](x) < G[j](x) then
6: G[k]↔ G[id]
7: id← id+ 1

8: G[j]↔ G[id]
9: if id− i+ 1 > p then B the answer is to the left

10: return QuickselectRec(G, i, id− 1, p, x)

11: if id− i+ 1 < p then B the answer is to the right
12: return QuickselectRec(G, id+ 1, j, p− (id− i+ 1), x)

13: return G[id]

From now on, to simplify expressions in the pseudocode, we will sometimes write
g(x) to mean g.m · x+ g.b for an arbitrary line g. We did this, for instance, in line 5
of Algorithm 12.

3.3 Find trapezoid

Now we will present a linear-time implementation of FindTrapezoid(G, p, T ),
based on the description found in [7] just before Lemma 3.5 and on the parame-
ters given by the same Lemma 3.5.

This function receives a set G of lines, an index p with 1 ≤ p ≤ |G|, and an
interval T , and returns a T -trapezoid τ that contains the entirety of Lp(G) in T and
intersects only a certain predetermined fraction of lines in G.

The left side of τ will be bounded by the (p − ε|G|)-th and the (p + ε|G|)-
th lines of G when these lines are sorted by evaluation at the left end of T for a
certain ε > 0. Analogously, the right side of τ will be bounded by the (p− ε|G|)-th
and the (p+ ε|G|)-th lines of G when these lines are sorted by evaluation at the right
end of T . According to [7, Lemma 3.5], for the value ε = 1

8 , less than half of the lines
in G intersect the obtained T -trapezoid τ and such τ contains the entirety of Lp(G)
in T .

That means that we need to be able to determine what is the p-th line of a set G
of lines when it is sorted by increasing evaluation at a given x. That can be done in
linear time using the Quickselect function discussed in Section 3.2.2.

With that, our final algorithm to find the T -trapezoid is as shown in Algorithm 13.
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Algorithm 13 FindTrapezoid(G, p, T )

Input: a set G of lines in general position, an integer p such that 1 ≤ p ≤ |G|, and
an interval T

Output: a T -trapezoid that intersects less than half of the lines in G and that
contains the entirety of Lp(G)

1: (a, b)← T

2: offset ←
⌊
|G|
8

⌋
3: leftup ←Quickselect(G, p+ offset , a)(a) B Lp+offset(G) at a
4: leftdown ←Quickselect(G, p− offset , a)(a) B Lp−offset(G) at a
5: rightup ←Quickselect(G, p+ offset , b)(b) B Lp+offset(G) at b
6: rightdown ←Quickselect(G, p− offset , b)(b) B Lp−offset(G) at b
7: τ ← (leftup, leftdown, rightup, rightdown)
8: return τ

3.4 Discard lines

Lastly, let us describe the procedure that performs Step 3 in the algorithm outlined
in Section 3.1. That is, we will describe the function DiscardLines(G, p, τ), that
receives a set G of lines in general position, an integer p such that 1 ≤ p ≤ |G|,
and a T -trapezoid τ . The function returns a new set G′ of lines that is obtained
by removing all lines in G that do not intersect τ and a new index p′ such that
Lp′(G

′) = Lp(G) within T .
This can be done by simply going through all lines in G and checking if they

intersect τ . Additionally, for any line in G strictly below τ , the value of p must be
decreased by one. We can do that in linear time, as shown in Algorithm 14.

In this algorithm we use two subroutines: Intersects(τ, g), that returns true
if the line g intersects the trapezoid τ , and Above(τ, g), that returns true if τ is
strictly above g.

Algorithm 14 DiscardLines(G, p, τ)
Input: a set G of lines, an index p such that 1 ≤ p ≤ |G| and a trapezoid τ
Output: a subset G′ of G that contains only lines of G that intersect τ , and p′ so

that Lp′(G′) = Lp(G) within T
1: G′ ← {}
2: p′ ← p
3: for g ∈ G do
4: if Intersects(τ, g) then G′ ← G′ ∪ {g}
5: if Above(τ, g) then p′ ← p′ − 1

6: return (G′, p′)
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3.5 Brute force

The following brute-force procedure, presented in Algorithm 15, can be used at the
base of Lo, Matoušek, and Steiger algorithm, when the number of lines in the given
sets is small enough. It is a variant of Algorithm 4, the DualNaiveSolve that
finds an intersection of the median levels of two sets of lines. In Algorithm 15, we
find the intersection of two arbitrary levels. It uses as a subroutine a procedure that
decides whether a point q is in Lp(G), presented in Algorithm 16, which is a variant
of Algorithm 3.

Algorithm 15 BruteForce(G1, G2, p1, p2, T )
Input: two nonempty sets G1 and G2 of lines, indices p1 and p2 with 1 ≤ pi ≤ |G|,

and an interval T
Output: a T -intersection between Lp1(G1) and Lp2(G2)
1: for g1 ∈ G1 do
2: for g2 ∈ G2 do
3: x← g2.b−g1.b

g1.m−g2.m
4: y ← g1.m · x+ g1.b
5: q ← (x, y) B intersection of g1 and g2
6: if x ∈ T and IsPthLevel(G1, p1, q) and IsPthLevel(G2, p2, q) then
7: return q

Algorithm 16 IsPthLevel(G, p, q)
Input: a set G of lines, an index p with 1 ≤ p ≤ |G|, and a point q
Output: true if q is in the p-th level of G and false otherwise
1: below ← 0
2: for g ∈ G do
3: if q.y < g.m · q.x+ g.b then below ← below + 1

4: return below + 1 = p



Chapter 4

Sorting networks and variants

The linear-time implementation of the function NewInterval uses a generalization
of a so called sorting network. These sorting devices were first studied in 1954 by
Armstrong, Nelson, and O’Connor, who later patented the idea [10]. They quickly
became a subject of interest in the Computer Science community for their theo-
retical properties and real-world applications, and are now commonly referenced in
renowned books in Computer Science [5, 6].

4.1 Sorting networks

A sorting network is a device that can be used to efficiently sort an array when
multiple disjoint pairs of elements can be compared at the same time. The sorting
algorithm based on a sorting network will work in steps. In each step some disjoint
pairs of positions of the array will have their contents swapped if they are in the
wrong order. Since these pairs are disjoint, those swaps can be done in parallel. In
subsequent steps, other disjoint pairs of positions will be considered and, once all
the steps are done, the initial array is ordered (Figure 4.1).
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Figure 4.1: The device can be more easily understood through a drawing that re-
sembles a network, hence the name. Each horizontal line corresponds to a position
in the array and each vertical line is a potential swap. The rectangles represent the
steps of the network. The second figure shows a simulation of what an execution of
a sorting network might look like. The steps are processed from left to right and
all swaps in the same step are done at once. The permutation that sorts the input
vector defines the movements done in the network, in this case: (3, 1, 4, 2).
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What follows is one of the possible formalizations of this structure, as written by
Matoušek in [8]. It also defines the notation we will be using.

A parallel step P of width n is a set P = {(p1, q1), . . . , (ps, qs)} of ordered
pairs, such that p1, q1, p2, q2, . . . , ps, qs are distinct members of [n] (thus
s ≤ n/2). The ordered pair (pi, qi) is called a comparator. A network
H of width n and depth D is the ordered D-tuple H = (P1, P2, . . . , PD)
where the Pi are parallel steps of width n.

The computation of a network H = (P1, P2, . . . , PD) on an input vector
(i1, . . . , in) proceeds as follows: In the first step, ip is compared with iq for
every (p, q) ∈ P1, and whenever ip > iq, these entries in the input vector
are exchanged. The input vector modified in this way is then processed
by the second parallel step, etc.

The computation of the network obviously depends only on the permuta-
tion π which orders the input vector (i.e., such that iπ(1) < · · · < iπ(n)).
Let H(π) denote the permutation performed on the input vector by the
network when the input vector is ordered by π. Thus, H is a sorting
network in the usual sense if and only if H(π) = π for every π.

Algorithmically, an interesting problem is how to build a network with few parallel
steps that sorts an array of some given size. Most of the networks of width n that are
used in practice have O(log2 n) depth, and therefore O(n log2 n) size. An important
discovery was the AKS network [1], by Ajtai, Komlós, and Szemedéri, that has
O(log n) depth, and therefore O(n log n) size. This network is extensively used in
theoretical constructions, as will be the case for this work, but is unpractical for
real applications due to big constants hidden behind its seemingly efficient time
complexity. In particular, it involves expander graphs.

4.2 Tolerant ε-sorting networks

Using the notation above, π is the permutation that sorts the input vector of a
network and H(π) is the permutation performed by the network H when that same
vector is given as an input.

If H is a sorting network then, for every input vector, H(π) = π. In other words,
H(π) ◦ π−1 must be the identity permutation, and thus has zero inversions.

Sometimes we do not need to completely sort an array. It might be convenient to
have a network H such that, for every input vector, H(π) and π are similar enough,
although not necessarily equal.

Formally, for an ε > 0, we call a network H of width n an ε-sorting network
if H(π) ◦ π−1 has a number of inversions no greater than ε

(
n
2

)
.

Additionally, for an integer t, a network H is a t-tolerant ε-sorting network if any
network generated by deleting at most t comparators from H is an ε-sorting network.

We will be further investigating properties of the AKS network previously men-
tioned. There are two important properties, stated by Matoušek [8, Lemmas 3.5
and 3.6], that we will be using. These properties are stated in the next lemmas.

Lemma 2. There exists a constant C such that, for each n and 0 < ε < 1, the
first C log 1

ε steps of the AKS sorting network of width n form an ε-sorting network.
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Lemma 3. Let H be an ε-sorting network of depth D and let t < εn
2D+1 . Then H is

a t-tolerant 2ε-sorting.

From these two lemmas, we derive the following by detailing what is asymptoti-
cally stated by Matoušek [8, Corollary 3.7].

Corollary 1. There exists a constant C such that, for n� 1 and 0 < ε < 1, we can
construct a t-tolerant ε-sorting network H = H(n, ε) of width n and depth at most
C log(1ε ), for t < εC+1n/4.

This means that, for constant values of ε, we can have a t-tolerant ε-sorting
network of constant depth for values of t that depend linearly on n.

4.3 Construction and simulation of sorting networks

By Lemmas 2 and 3, a network as in Corollary 1 is a truncate version of an AKS
sorting network. This truncated version of an AKS sorting network of width n has
a linear number of comparators on n. Unfortunately, there is no explicit statement
in [1, 8] that the construction of such a network takes time proportional to its size.
In fact, even the time to construct an expander graph needed for the AKS sorting
network is not explicitly stated. But, to assure the linear complexity of the algorithm
of Lo, Matoušek, and Steiger, there must be a construction of such a network that
takes time linear on its size. So we will assume that such a construction exists, and
refer to such constructions in the next chapter. Concretely, we will use in Chapter 5
the two following functions: SortingNetwork(n), that returns a sorting network
of width n in time O(n log n), and TolerantSortingNetwork(n, ε), that returns
a t-tolerant ε-sorting network of width n and depth at most C log(1ε ), for C given by
Corollary 1, for t = εC+1n/5, that runs in time O(n log(1ε )).

Now we will present an example of how we might run a sorting network. This
also establishes the pseudocode notation that will be used in later algorithms.

For now, the pseudocode will ignore the parallel properties of the network, and the
pairs in each step will be processed sequentially. This will be changed later to exploit
properties of the structure of the problem at hand. The algorithm also requires the
existence of a function IsGreater(S, i, j), that returns true if S[i] > S[j] and
false otherwise.

Additionally, it is worth noting that Algorithm 17 applies to both regular sorting
networks and tolerant ε-sorting networks. It performs a call to IsGreater per
comparator in the network.

Algorithm 17 RunNetwork(S,H)

Input: a vector S and a network H of width |S|
Output: H(π), where π is the permutation that sorts S
1: π ← (1, . . . , |S|)
2: for P ∈ H do
3: for (p, q) ∈ P do
4: if IsGreater(S, π[p], π[q]) then π[p]↔ π[q]

5: return π



Chapter 5

Linear-time implementation

Algorithm 6, presented in Chapter 3, outlines an O(n log n) solution to the ham
sandwich problem. The bottleneck for the complexity of the solution is Algorithm 7:
the procedure NewInterval, so in this section we will go into more detail on how
to make it linear.

5.1 Search for a good intersection

The function NewInterval receives two sets G1 and G2 of lines, integers p1 and p2
with 1 ≤ pi ≤ |Gi|, and an interval T that has the odd intersection property in
relation to Lp1(G1) and Lp2(G2). It returns an interval T ′ ⊂ T that also has the odd
intersection property in relation to Lp1(G1) and Lp2(G2) and such that the number
of T ′-intersections among lines in G1 is no more than α

(|G1|
2

)
(for α = 1

32).
The linear implementation of this function that we will outline was originally

described by Lo, Matoušek, and Steiger [7].
The main idea of the algorithm behind this function is to divide the x-axis in a

constant number of disjoint open intervals T1, . . . , TC , each of them containing no
more than a fraction α

(|G1|
2

)
of the intersections among the lines in G1.

If every intersection of Lp1(G1) and Lp2(G2) is in exactly one interval, there is
an interval Ti such that Ti∩T has the odd intersection property. With that, one can
check for every i ∈ [C] if T ∩Ti has such property in linear time, using Algorithm 10,
and return the interval that does.

To describe the linear function NewInterval, firstly we will assume we have a
function FindApproximateIntersection that receives a set G of lines in general
position, an integer k with 1 ≤ k ≤

(|G|
2

)
, and a real number δ with 0 < δ < 1, and

returns an x-coordinate a such that the number s of intersections of lines in G to
the left of the vertical line x = a satisfies |k − s| ≤ δ

(|G|
2

)
. In other words, it finds

the x-coordinate of an intersection of lines in G that deviates from the k-th one by
at most δ

(|G|
2

)
intersections. The original outline of this function was presented by

Matoušek [8] and runs in O(|G| log3 1
δ ) time.

We will firstly show that such function is enough for us to design a linear version
of NewInterval. Then we will expand on how to implement the function with the
desired time complexity.

28
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The linear NewInterval will use auxiliary functions IntervalIntersection,
that takes two intervals T and T ′ and returns their intersection in constant time,
and OddIntersectionProperty that was previously described as Algorithm 10.
The linear implementation of NewInterval is shown in Algorithm 18 so we can
analyse its time complexity.

Algorithm 18 NewInterval(G1, G2, p1, p2, T )

Input: two sets G1 and G2 of lines in general position, two integers p1 and p2 with
1 ≤ pi ≤ |Gi|, and an interval T that has the odd intersection property in relation
to Lp1(G1) and Lp2(G2)

Output: an interval T ′ ⊂ T such that the number of T ′-intersections among the
lines in G1 is no more than α

(|G1|
2

)
(for α = 1

32) and T
′ has the odd intersection

property in relation to Lp1(G1) and Lp2(G2)
1: α← 1

32
2: δ ← α

4
3: u0 ← −∞
4: for i ∈ [0,

⌊
2
α

⌋
) do

5: ui ← FindApproximateIntersection(G1,
⌈
iα2
(|G1|

2

)⌉
, δ)

6: Ti ← (ui−1, ui)
7: T ′ ← IntervalIntersection(T, Ti)
8: if OddIntersectionProperty(G1, G2, p1, p2, T

′) then return T ′

9: Tlast ← (ub 2
αc,+∞)

10: T ′ ← IntervalIntersection(T, Tlast)
11: return T ′

As α is a constant, the number of iterations of the for loop in line 4 is constant. So
Algorithm 18 takes time asymptotically equivalent to the sum of the running times of
FindApproximateIntersection and OddIntersectionProperty. The time
complexity of NewInterval will then be O(n log3 1

δ + n), which is O(n log3 1
δ ),

where n = |G1|+ |G2|. Because δ is also a constant, the function runs in O(n) time.
Now what is left to prove is that this function produces a correct result.

Take N =
(|G1|

2

)
. Let t1 < · · · < tN be the x-coordinates of all the intersections

of lines in G1. Consider tj = −∞ if j < 1 and tj = ∞ if j > N . Given a certain
integer k with 0 ≤ k ≤ N and δ > 0, FindApproximateIntersection can be
used to find the x-coordinate of an intersection between lines in G1 in the interval
[tdk−δNe, tdk+δNe). We want to use that to determine the intervals T1, . . . , TC .

There are two things that need to be proven: firstly that the intersection of T
with one of the intervals considered will have the odd intersection property in relation
to Lp1(G1) and Lp2(G2); secondly that all intervals T1, . . . , TC have at most αN
intersections among lines in G1.

Now let us calculate the maximum possible amount of x-coordinates of intersec-
tions between lines in G1 within any interval Ti. For 0 ≤ i <

⌊
2
α

⌋
, let ui denote the

output of FindApproximateIntersection with G = G1, k =
⌈
iα2N

⌉
, and δ = α

4 .
From the description of the algorithm, we know that

ui−1 ≥ tdd(i−1)α2Ne−α4Ne and ui ≤ tddiα2Ne+α
4
Ne−1.
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Since Ti = (ui, ui+1), the number of intersections among lines in G contained in Ti
is at most:⌈⌈

i
α

2
N
⌉

+
α

4
N − 1

⌉
−
⌈⌈

(i− 1)
α

2
N
⌉
− α

4
N
⌉
− 1

≤
⌈(
i
α

2
N + 1

)
+
α

4
N
⌉
−
⌈(

(i− 1)
α

2
N
)
− α

4
N
⌉
− 2

≤
((
i
α

2
N + 1

)
+
α

4
N + 1

)
−
((

(i− 1)
α

2
N
)
− α

4
N
)
− 2

= αN.

Figures 5.1, 5.2, and 5.3 show an example of what that might look like.

t1 t2 t3t4 t5 t6

Figure 5.1: The labels of the x-coordinates of the intersections between lines in a
set G.

u0 u1 u2 u3

Figure 5.2: For α = 1
2 (to enable the visualization of a small example) and, since

|G| = 4 and N = 6, the intervals in which each u can lie will be: u0 ∈ [t0, t2),
u1 ∈ [t2, t4), u2 = [t3, t5) and u3 ∈ [t5, t7). In the image above, each u lies in its
interval.

Also, one can see that the intervals T1, . . . , TC cover the entire span of T except
for a subset of T ∩ {t1, . . . , tN}. Since we are assuming general position, the x-
coordinate of no intersection of Lp1(G1) and Lp2(G2) coincides with the x-coordinate
of an intersection of two lines in G1. So, because T contains an odd number of
intersections between Lp1(G1) and Lp2(G2) and each one of them must happen in
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T1 T2 T3 T4 T5

Figure 5.3: Now we can establish our open intervals Ti, in which no interval contains
more than αN = 3 intersections among the lines in G. Notice that T1 and T5 extend
to minus infinity and infinity, respectively.

exactly one interval Ti, there must be an interval T ∩ Ti containing an odd number
of intersections between Lp1(G1) and Lp2(G2).

Additionally, we only need to find ui for 0 ≤ i <
⌊
2
α

⌋
. Since α is a constant, we

will be making at most
⌊
2
α

⌋
calls to FindApproximateIntersection, as shown in

Algorithm 18.
Our goal is to describe an implementation of FindApproximateIntersection

that runs in O(|G| log3 1
δ ) time. We will start by describing a slower algorithm to

find the k-th intersection among lines in G and will incrementally add modifications
to turn this into the desired implementation of FindApproximateIntersection.

5.2 Permutations and intersections

Consider the x-coordinates of all the intersections among the lines in G sorted in-
creasingly. Call this sorted sequence t1, t2, . . . , tN . Our goal is to determine tk.

Although this is not a sweep line algorithm, we will use similar terminology,
associating the x-axis with the notion of time. For example, we can say that ti+1

happens later than ti.
As in a sweep line algorithm, imagine a vertical line that sweeps the plane from

left to right. The order in which the lines in G intersect this sweep line changes
exactly when the sweep line is passing by one of the coordinates tl. Keep track of
the order in which they intersect the sweep line during this sweep. Specifically, call πl
the permutation that sorts the lines in G in the order in which they intersect the
sweep line when it just passed tl. In particular, π0 is the permutation that sorts the
lines in G by slope, in decreasing order. Note that πl−1 and πl differ by one swap
between two consecutive lines in the order given by πl. The two lines that have been
swapped intersect exactly at tl.

This swap between two adjacent elements that were previously in the same order
as in π0 makes the number of inversions in πl be one more than the number of
inversions in πl−1 with respect to π0. So πl has exactly l inversions with respect
to π0, as exemplified in Figure 5.4.

We will show that, given πk for some k, one can find the coordinate tk in linear



32 CHAPTER 5. LINEAR-TIME IMPLEMENTATION

t1 t2 t3t4 t5 t6

1

2

3 4

Figure 5.4: To simplify, in the example, the numbering of the lines coincides with π0,
that is, π0 is the identity. That way, π0 = (1, 2, 3, 4), π1 = (2, 1, 3, 4), π2 = (2, 1, 4, 3),
π3 = (2, 4, 1, 3), π4 = (2, 4, 3, 1), π5 = (4, 2, 3, 1), and π6 = (4, 3, 2, 1). Notice that,
for every l, πl has l inversions in relation to π0.

time. That way, finding the permutation πk is enough to solve the problem.
Consider all the pairs of lines that have intersected at an x-coordinate no greater

than tk. By the definition of tk, one of them must have intersected at exactly tk.
The pair of lines that have intersected at coordinates no greater than tk are the
pairs that have changed in order from π0 to πk, that would be the pairs labeled (i, j)
such that π−10 (i) > π−10 (j) and π−1k (i) < π−1k (j) or such that π−10 (i) < π−10 (j) and
π−1k (i) > π−1k (j).

Since the only difference between πk and πk−1 is that two lines that are adjacent
in πk have swapped places, we know that the pair of lines whose intersection has
x-coordinate exactly tk will be adjacent in πk. Using that, we can simply iterate
through the adjacent lines in πk, check in constant time if they have already inter-
sected, and find such pair whose intersection has the largest x-coordinate, which will
be tk.

We do so in the linear-time algorithm GetCoordinate, Algorithm 19, that
receives a set G of lines and a permutation π, and returns the corresponding tk
if π = πk for some k with 0 ≤ k ≤ N .

Algorithm 19 GetCoordinate(G, π)

Input: a set G of lines and a permutation π
Output: tk if π = πk for some k
1: t← −∞
2: for i ∈ [1, |G| − 1] do
3: if (G[π[i]].m < G[π[i+ 1]].m) then
4: t← max{t, Intersection(G[π[i]], G[π[i+ 1]])}
5: return t

To exemplify the simulation of the algorithm, let us consider the set of lines in
our input is the same as in Figure 5.4 and π = (2, 4, 3, 1). Initially t = −∞. We
will iterate through the adjacent elements on π. Elements 2 and 4 are such that the
slope of line 2 is greater than the one of line 4, meaning that line 2 appears before
line 4 in π0, so their intersection has not passed yet. Thus t remains unchanged.
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Elements 4 and 3 are such that the slope of line 4 is smaller than the one of line 3, so
their intersection, which happens to be t2, already passed, hence t = max(t, t2) = t2.
Elements 3 and 1 are such that the slope of line 3 is smaller than the one of line 1, so
their intersection, which happens to be t4, already passed, hence t = max(t, t4) = t4.
There are no more adjacent pairs so that is the final value for t. Since π = π4, t4 is
indeed the answer we were looking for.

5.3 Determining the permutation

To efficiently determine πk, we will apply some comparison-based sorting algorithm
to order G according to the intersection with the line x = tk.

A comparison-based sorting algorithm works by asking queries with the following
format: is element i greater than element j? Such query will be answered by some
comparison operation. There are algorithms that, to sort an array of size n, only
need to answer O(n log n) such queries. It can be proven that no algorithm can sort
an array with o(n log n) questions.

The comparison operation has the same form as the function IsGreater dis-
cussed in Section 4.3, but it refers to the order in which the lines in G intersect the
line x = tk. That is, to determine πk, the queries will be: given a set G of lines, two
integers i and j (1 ≤ i, j ≤ |G|), and an integer k (0 ≤ k ≤

(
n
2

)
), is π−1k (i) > π−1k (j)?

If such query can be answered by some function IsGreater(G, i, j, k), we can con-
struct an algorithm that executes a sorting network and obtains πk, just as Algo-
rithm 17, but with the extra parameter k, as shown in Algorithm 20.

Algorithm 20 RunNetwork(G,H, k)

Input: a set G of lines, a network H of width |G|, and an integer k (0 ≤ k ≤
(
n
2

)
)

Output: the permutation πk
1: π ← (1, . . . , |G|)
2: for P ∈ H do
3: for (p, q) ∈ P do
4: if IsGreater(G, π[p], π[q], k) then π[p]↔ π[q]

5: return π

The final algorithm to find tk is shown in Algorithm 21, and uses the func-
tion SortingNetwork(n) that returns a sorting network of width n. It also uses
the functions RunNetwork, described above, and GetCoordinate, that was de-
scribed in Section 5.2.

Algorithm 21 FindIntersection(G, k)

Input: a set G of lines and an integer k
Output: the value of tk
1: H ← SortingNetwork(|G|)
2: π ← RunNetwork(G,H, k)
3: return GetCoordinate(G, π)

Now let us discuss how to implement IsGreater(G, i, j, k). Let ui,j be the x-
coordinate of the intersection of G[i] and G[j]. We know that the lines G[i] and G[j]
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intersect at tl for some l. We can find the value of l by finding πl using IndSortEval,
described in Section 3.2.1, to sort the lines at x = ui,j , and counting its number of
inversions of πl in relation to π0. One of the following cases will happen:

If l > k, then tl > tk, so at x = tk the intersection between G[i] and G[j] has not
happened yet. That way, the two lines G[i] and G[j] will have kept their initial slope
order, given by π0. Analogously, if l ≤ k, the two lines will have already intersected
at x = tk, so their order will be the inverse of what their initial slope order π0 was.
This is exemplified in Figure 5.5.

t1 t2 t3

1

2

3

Figure 5.5: In this example, π0 = (1, 2, 3), π1 = (2, 1, 3), π2 = (2, 3, 1), and
π3 = (3, 2, 1). Take lines 1 and 3, that intersect at t2. Notice how 1 and 3 are
in the same relative order as in π0 for all πk such that k < 2. On the other hand, for
all πk such that k ≥ 2, 1 and 3 are inverted in relation to π0

This leads to the implementation of IsGreater shown in Algorithm 22, and
concludes the description of an algorithm to find tk. Algorithm 22 uses the function
Inversions, that takes the set G of lines and a permutation π as parameters, and
returns the number of inversions in π in relation to the permutation π0 that sorts G
by decreasing slope. This function, similarly to Algorithm 8, can be implemented to
run in time O(|G| log |G|).

Algorithm 22 IsGreater(G, i, j, k)

Input: a set G of lines, indices i and j with 1 ≤ i, j ≤ |G|, and an integer k
Output: true if π−1k (i) > π−1k (j) and false otherwise
1: t← Intersection(G[i], G[j]).x
2: π ← IndSortEval(G, t)
3: l← Inversions(G, π) B inversions with respect to π0
4: if l ≤ k then B t = tl ≤ tk?

5: return G[i].m > G[j].m B π−1
0 (i) < π−1

0 (j)

6: else
7: return G[i].m < G[j].m B π−1

0 (i) > π−1
0 (j)

Let us see what a call like IsGreater(G, 1, 3, 3) would look like, where G is the
set of lines in Figure 5.5. Firstly we have that the intersection of lines 1 and 3 is t2,
so t = t2. The permutation π is the one that sorts G at t2, that is π = π2 = (2, 3, 1).
The number of inversions of π2 with respect to π0 is 2, so l = 2. Since l ≤ k = 3, we
enter line 5, and return whether the slope of line 1 is greater than the slope of line 3,
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which is the case. That way, our function concludes that π−13 (1) > π−13 (3), which is
the case since π−13 (1) = 3 and π−13 (3) = 1, as can be seen in the figure.

The final time complexity of Algorithm 21 is the time complexity of IsGreater,
which is O(|G| log |G|), multiplied by the number of queries done by the sorting
network, also O(|G| log |G|). This leads to a final time complexity of O(|G|2 log2 |G|).

As you can see, this is worse than the naive solution, which would be to
simply find all intersections and sort them by x-coordinate, which can be done
in O(|G|2 log |G|). However, we can now start reducing the time complexity by
making certain parts of the algorithm more efficient. The first aspect to be changed
is to replace the sorting algorithm by a sorting network.

5.4 Efficiently answering queries on a sorting network

To make FindIntersection more efficient, we will modify some aspects of the pro-
cedure RunNetwork so we can benefit from some properties of the ham sandwich
point problem.

Consider a sorting network H. Each parallel step of H gives us a set P of queries.
Let ui,j be the x-coordinate of the intersection of the lines G[i] and G[j]. Let the
median comparator in P be its comparator (a, b) that has the median value of ua,b.

We will perform a binary search of sorts to answer half of the queries in P at once.
Consider the median comparator (a, b) of P . By using the algorithms IndSortEval
and Inversions, described in Section 5.3, we can compute the number of inversions
of the permutation that sorts the lines in G according to their intersection with the
vertical line at x = ua,b. That permutation is πl for some l. We will use the fact
that ua,b is the median among the x-coordinates corresponding to the queries in P
to obtain information on other queries of P .

For example, suppose that l > k. Then we know that ua,b = tl > tk and G[a]
and G[b] are in the same order in πk as they are in π0. So if ua,b > tk, then for every
(p, q) ∈ P such that up,q > ua,b, we also have up,q > tk. That way, p and q are also in
the same order in πk as they are in π0. Since (a, b) is the median comparator of P ,
we can answer half of the queries in P in this case.

If l < k, we can make an analogous reasoning to conclude that we can also answer
half of the queries in P , this time for every (p, q) ∈ P such that up,q < ua,b. If l = k,
we have found our answer, that is, tk = ua,b, and can exit the algorithm completely.

With that, our algorithm will be as shown in Algorithm 23. It uses the functions
SortingNetwork, IsGreater, and GetCoordinate, that were previously de-
fined and the function Partition that receives a set G of lines, a permutation π,
a parallel step P of a network of width |G|, and two indices i and j such that
1 ≤ i ≤ j ≤ |P |. This function reorders the comparators of P [i . . j] in such a
way that the median comparator (a, b) of P [i . . j] ends up exactly in P [

⌈
i+j
2

⌉
], all

comparators (p, q) ∈ P such that up,q < ua,b end up in P [i . . (
⌈
i+j
2

⌉
− 1)], and all

comparators (p, q) ∈ P such that up,q > ua,b end up in P [(
⌈
i+j
2

⌉
+ 1) . . j]. To do so,

it finds the median comparator using a function similar to QuickSelect, described
in Section 3.2.2. The permutation π is passed as a parameter to Partition so that
it accesses the lines in G in the order in which they are just before step P .
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Algorithm 23 FindIntersection(G, k)

Input: a set G of lines and an integer k
Output: the value of tk
1: H ← SortingNetwork(|G|)
2: π ← (1, . . . , |G|)
3: for P ∈ H do
4: i← 1, j ← |P |
5: while i < j do
6: Partition(G, π, P, i, j)

7: m←
⌈
i+j
2

⌉
8: (a, b)← P [m]
9: if (G[π[a]].m > G[π[b]].m) = IsGreater(G, π[a], π[b], k) then

10: for (p, q) ∈ P [i . .m] do
11: if G[π[p]].m > G[π[q]].m then π[p]↔ π[q]

12: i← m+ 1
13: else
14: for (p, q) ∈ P [(m+ 1) . . j] do
15: if G[π[p]].m < G[π[q]].m then π[p]↔ π[q]

16: j ← m− 1

17: return GetCoordinate(G, π)

By reducing the number of unanswered queries in a step by half repeatedly, we
can solve a parallel step of the network H of width |G| with only O(log |G|) calls to
IsGreater. Since we have Θ(log |G|) parallel steps and the function IsGreater
takes O(|G| log |G|) time, the current time complexity of FindIntersection as in
Algorithm 23 is O(|G| log3 |G|).

This is still not linear, but it is already better than the naive algorithm. Now we
will need to insert approximation ideas to remove the extra O(log3 |G|) multiplier.
Specifically, we will introduce three approximation ideas independently, and each one
of them will eliminate a log |G| from the time complexity of the algorithm.

5.5 Approximately finding the tk

We will modify the algorithm FindIntersection in three steps, each one of them
will remove a log |G| from its time complexity, substituting it with some function of
an approximation parameter, but will also make its answer more inaccurate. As long
as the approximation parameter is a constant, any function of it will also be so. That
way, once we perform all approximations, we will have reached a linear algorithm.

The three approximations will be:

• Substituting the use of IsGreater by a function that approximately counts
the number of inversions in a permutation πl

• Substituting the sorting network with a tolerant ε-sorting network;

• Answering half the queries on each network step a constant number of times,
instead of doing it until all queries are answered.
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Meanwhile, we will also eliminate the need for the usage of the function Get-
Coordinate, that does not work for approximate versions of πk.

Now let us go into further details on how to introduce each of the approximations.

5.5.1 Counting intersections in linear time

This section will present a function ApproximateIntersections(G, t, δ) that re-
ceives a set G of lines in general position, an x-coordinate t, and a number δ with
0 < δ < 1, and returns a number that differs by no more than δ

(|G|
2

)
from the num-

ber of intersections among lines in G that have x-coordinate no greater than t. The
running time of this function will be O(|G| log(1δ )).

One exact way to do this, similar to Algorithm 22, is sorting the lines in G
by evaluation at t0 = −∞ (which is sorting by decreasing slope), calculating the
evaluation of each line at x = t (resolving ties using the slopes), and counting the
inversions in the resulting array. However, we cannot do the sorting or the counting
because each of these alone would cost more than linear time. On the other hand,
we only need to determine approximately the number of such inversions.

The approach we will use, presented in Algorithm 24, is very similar to that.
The difference is that the sorting and the inversion counting are both going to be
approximate.

Algorithm 24 ApproximateIntersections(G, t, δ)

Input: a set G of lines, an x-coordinate t, and a number δ with 0 < δ < 1
Output: the number of intersections among lines in G that have x-coordinate not

greater than t, wrong by no more than δ
(|G|

2

)
. As a side effect, the algorithm

rearranges G.
1: ApproximateSlopeSort(G, δ/2)
2: ans← ApproximateInversions(G, t, δ/2)
3: return ans

The following definition will help us to formally describe the output of the two
algorithms used in ApproximateIntersections.

Definition 9. Let A be an array of size n. If A is split into no more than 2
ε segments,

each with at most max{1, εn} consecutive elements of A, and every inversion in A
with respect to an order is inside some of these segments, we say that A is ε-bucket-
sorted with respect to that order.

Algorithm ApproximateSlopeSort(G, ε) rearranges the setG of lines so that it
is ε-bucket-sorted according to decreasing slope. It runs in O(|G| log(1ε )). Algorithm
ApproximateInversions(G, t, ε) returns the number of inversions in G, off by no
more than ε

(|G|
2

)
, with respect to the order of the evaluation of the lines at x = t,

with ties sorted by increasing slope of the lines. As a side effect, it rearranges G so
that it is ε-bucket-sorted according to the evaluation of the lines at x = t. It also
runs in O(|G| log(1ε )).

From this, clearly Algorithm 24 runs in O(|G| log(1δ )). Now let us argue that
Algorithm 24 is correct. Let I be the number of intersections among lines in G that
have x-coordinate not greater than t. We have to prove that |ans−I| ≤ δ

(|G|
2

)
. Note
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that I is exactly the number of inversions that G, sorted by evaluation at x = t, has
in relation to G sorted by decreasing slope of the lines.

Let G0 be the state of G after line 1 was executed. Let I0 be the number of
inversions in G0 with respect to the order of the evaluation of the lines at x = t,
with ties sorted by increasing slope of the lines. By the description of algorithm
ApproximateIntersections, we have that |ans− I0| ≤ δ

2

(|G|
2

)
, that is,

ans− δ

2

(
|G|
2

)
≤ I0 ≤ ans+

δ

2

(
|G|
2

)
.

On the other hand, as G0 is δ
2 -bucket sorted with respect to the decreasing slope

order by the description of ApproximateSlopeSort, the number I ′ of inversions
that G0 may have with respect to this order is such that

0 ≤ I ′ ≤ 4

δ

( δ2n)( δ2n− 1)

2
=
δ

2
n2 − n < δ

2

(
n

2

)
.

Therefore, I ≤ I0 + I ′ ≤ ans+ δ
(|G|

2

)
and I ≥ I0 − I ′ ≥ ans− δ

(|G|
2

)
.

Now we will describe ApproximateSlopeSort and ApproximateInversions
in more detail.

Algorithm ApproximateSlopeSort(G, ε) rearranges the set G of lines so that
it is ε-bucket-sorted according to decreasing slope. It does so by calling the recursive
function ApproximateSlopeSortRec(G, ε, i, j), that rearranges the set G[i . . j]
of lines so that it is ε-bucket-sorted according to decreasing slope. Algorithm Ap-
proximateSlopeSortRec is a recursive divide-and-conquer algorithm, similar to
Quicksort. It uses the function PartitionInHalf to divide the array in two halves
in such a way that there are no inversions between lines of different halves with
respect to their slope. We will do so in such a way that G is divided into no more
than 1

ε buckets of size at most dεne each, leaving it ε-bucket-sorted.
The final procedure ApproximateSlopeSort will be as shown in Algorithm 25.

It calls the function ApproximateSlopeSortRec, shown in Algorithm 26.

Algorithm 25 ApproximateSlopeSort(G, ε)

Input: a set G of lines and a number ε such that 0 < ε < 1
Output: G is now ε-bucket-sorted decreasingly by slope
1: ApproximateSlopeSortRec(G, 1, |G|, ε)
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Algorithm 26 ApproximateSlopeSortRec(G, i, j, ε)

Input: a set G of lines, integers i and j with 1 ≤ i, j ≤ |G|, and a number ε with
0 < ε < 1

Output: G[i . . j] is now ε-bucket-sorted decreasingly by slope
1: if j − i+ 1 > max{1, ε|G|} then
2: PartitionInHalf(G, i, j)

3: ApproximateSlopeSortRec(G, i,
⌊
i+j
2

⌋
, ε)

4: ApproximateSlopeSortRec(G,
⌊
i+j
2

⌋
+ 1, j, ε)

Where PartitionInHalf is described in Algorithm 27. It receives a set G
of lines in general position and indices i and j with 1 ≤ i ≤ j ≤ |S|. It rear-
ranges G[i . . j] so that, for h = b(i+ j)/2c, all lines in G[i . . h] have slope greater
than the lines in G[h + 1 . . j]. We use G[i . . h].m < G[h+1 . . j].m to express this
condition. Moreover, the order of the lines in G[i . . h] and in G[h+ 1 . . j] is exactly
the order they had in G at beginning of the procedure.

Algorithm 27 PartitionInHalf(G, i, j)

Input: a set G of lines in general position and indices i and j with 1 ≤ i ≤ j ≤ |G|
Output: rearranges G so that G[i . . h].m < G[h+1 . . j].m for h=

⌊
i+j
2

⌋
1: if i < j then
2: k ← QuickSelectRec(G, i, j,

⌊
i+j
2

⌋
)

3: pivot ← G[k].m B median slope of lines in G[i . . j]
4: G′ ← G[i . . j]

5: t1 ← i, t2 ←
⌊
i+j
2

⌋
6: for t ∈ [i, j] do
7: if G′[t].m ≥ pivot then
8: G[t1]← G′[t]
9: t1 ← t1 + 1

10: else
11: G[t2]← G′[t]
12: t2 ← t2 + 1

Considering that QuickSelectRec runs in time O(j − i), as discussed in
Section 3.2.2, we can easily conclude that PartitionInHalf(G, i, j) also runs in
time O(j − i). In a similar way in which one can prove the time complexity of the
Mergesort algorithm, since ApproximateSlopeSortRec runs in O(j−i) time, not
considering the recursive calls, the complexity of ApproximateSlopeSort will be
O(nD), where D = log 1

δ is the depth of the recursion of ApproximateSlope-
SortRec. Therefore, the complexity of ApproximateSlopeSort is O(n log 1

ε ).
Now let us discuss the accuracy of the algorithm.
Notice that there are no inversions (in relation to the slope order of the lines)

among lines of different buckets. Since each bucket has size at most dεne, the number
of inversions in each bucket is at most (εn)(εn−1)

2 . That means that, by the end of
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that process, the total number of inversions in the array with respect to π0 will be:

1

ε

(εn)(εn− 1)

2
=
εn2 − n

2
≤ ε
(
n

2

)
.

Another important aspect to note is that an element position will not be wrong
by more than δn.

Now let us discuss ApproximateInversions.
Algorithm ApproximateInversions(G, t, ε) returns the number of inversions in

G, off by no more than ε
(|G|

2

)
, with respect to the order of the evaluation of the lines at

x = t, with ties sorted by increasing slope of the lines. As a side effect, it rearranges G
so that it is ε-bucket-sorted according to the evaluation of the lines at x = t. It does
so by calling the recursive function ApproximateInversionsRec(G, i, j, t, ε), that
does the same as ApproximateInversions, but with respect to G[i . . j] instead of
G.

The final procedure ApproximateInversions will be as shown in Algorithm 28.
It calls the function ApproximateInversionsRec, shown in Algorithm 29.

Algorithm 28 ApproximateInversions(G, t, ε)

Input: a set G of lines, an x-coordinate t, and a number r
Output: An approximate number of inversions with respect to the input set G. As

a side effect, the algorithm rearranges G.
1: return ApproximateInversionsRec(G, 1, |G|, t, ε)

Algorithm 29 ApproximateInversionsRec(G, i, j, t, ε)

Input: a set G of lines, integers i and j such that 1 ≤ i, j ≤ |G|, an x-coordinate t,
and a number ε

Output: An approximate number of inversions with respect to the input setG[i . . j].
As a side effect, the algorithm rearranges G[i . . j].

1: inv ← 0
2: if j − i+ 1 > max{1, ε|G|} then
3: inv ← SeparateInHalf(G, i, j, t)

4: +ApproximateInversionsRec(G, i,
⌊
i+j
2

⌋
, t, ε)

5: +ApproximateInversionsRec(G,
⌊
i+j
2

⌋
+ 1, j, t, ε)

6: return inv

Where SeparateInHalf is described in Algorithm 30. It receives a set G of
lines in general position, indices i and j with 1 ≤ i ≤ j ≤ |S| and an x-coordinate t.
It rearranges G[i . . j] so that, for h = b(i+ j)/2c, all lines in G[i . . h] have evaluation
at t smaller than the lines in G[h + 1 . . j]. We use G[i . . h](t) < G[h+1 . . j](t) to
express this condition. Moreover, the order of the lines in G[i . . h] and in G[h+1 . . j]
is exactly the order they had in G at beginning of the procedure. The algorithm
also returns the number of inversions G[i . . j] had among elements that are now in
different halves.
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The algorithm uses as an auxiliary function the function FindLineOfMedi-
anEvaluation(G, i, j, t), that returns the index of the line in G[i . . j] that has
median evaluation at t.

Algorithm 30 SeparateInHalf(G, i, j, t)

Input: a set G of lines, integers i and j such that 1 ≤ i, j ≤ |G| and an x-coordinate
t

Output: returns the number of inversions along the elements in different halves of
G[i . . j] when sorted by evaluation at t. The function also rearranges G so that
G[i . . h](t) < G[h+1 . . j](t) for h =

⌊
i+j
2

⌋
1: m← FindLineOfMedianEvaluation(G, i, j, t)
2: y ← G[m](t) B median y-coordinate in G[i . . j] at x-coordinate t
3: G′ ← G[i . . j]

4: t1 ← i, t2 ←
⌊
i+j
2

⌋
5: inv ← 0
6: for ` ∈ G′ do
7: if `(t) ≤ y then
8: G[t1]← `
9: t1 ← t1 + 1

10: inv ← inv + t2 −
⌊
i+j
2

⌋
11: else
12: G[t2]← `
13: t2 ← t2 + 1

14: return inv

Similarly to PartitionInHalf, SeparateInHalf(G, i, j, t) runs in time O(j−
i). From there, we can see that ApproximateInversionsRec has the same com-
plexity than ApproximateSlopeSortRec and ApproximateInversions has the
same complexity than ApproximateSlopeSort. Therefore, the complexity of Ap-
proximateInversions is O(n log 1

ε ).

Now let us discuss the accuracy of the algorithm.

What we need to do now is to bound the error on the number of inversions
counted by the algorithm that was just described in relation to the actual number
of inversions of πk in relation to G, where tk = t. This algorithm rearranges G using
the exact same method of ApproximateSlopeSort, but with a different order.
Instead of the slope order, it uses the order given by the intersection of the lines
in G with the vertical line at x = l. Meanwhile, it counts the number of inversions
undone while sorting G. As the sorting is not complete, stopping with a δ-bucket-
sorted array, some inversions of the complete order at x = l were not counted.

Just like in the previous algorithm, in the deepest level of the recursion, we will
have no more than 1

ε buckets of size at most εn each. This introduces (εn)(εn−1)
2

inversions for the order of the lines.
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5.5.2 Changing the sorting network

This section will describe two approximations to be applied to FindIntersection,
that will result in the implementation of FindApproximateIntersection. Recall
that the latter receives a set G of lines in general position, an integer k such that
1 ≤ k ≤

(|G|
2

)
, and a real number δ with 0 < δ < 1, and returns an x-coordinate a

for which the number s of intersections of lines in G to the left of the vertical line
x = a satisfies |k − s| ≤ δ

(|G|
2

)
. The implementation must run in O(|G| log3 1

δ ) time.
The first approximation reduces the Θ(log |G|) depth of the sorting network by

using a network of depth O(log(1δ )). The second approximation consists of using a
t-tolerant ε-sorting network, therefore allowing us to delete some comparators from
the network while it remains an ε-sorting network. More specifically, we will use a
tolerant δ-sorting network. That way, instead of obtaining the k-th intersection, we
will obtain an intersection that might be off by at most δN from the k-th intersection,
where N =

(|G|
2

)
.

To exploit the tolerance we will modify Algorithm 23. Similarly to such algorithm,
for each parallel step of the network, we will iteratively answer half of the remaining
queries in the parallel step. In Algorithm 23, we do this until all queries in the parallel
step have been answered. In FindApproximateIntersection, we will leave some
queries unanswered. That corresponds to deleting the corresponding comparators
from the network. We will leave at most δ|G| queries unanswered from each parallel
step. Since the number of queries in a parallel step is at most |G|, this means that
the maximum number of executions of line 5 of Algorithm 23 will go from O(log |G|)
to O(log(1δ )).

Since the number of deleted comparators can be as big as δ|G| per parallel step,
if the network we are performing this algorithm has depth O(log(1δ )), the number of
comparators removed will be O(δ|G| log(1δ )). If the network is a t-tolerant δ-sorting
network for an appropriate t = Ω(δ|G| log(1δ )), the resulting algorithm is simulating
a δ-sorting network.

Recall that TolerantSortingNetwork(n, ε), that returns a t-tolerant ε-
sorting network of width n and depth at most C log(1ε ), for C given by Corollary 1,
for t < εC+1n/4, that runs in time O(n log(1ε )). We will use t = t0 = δC+1|G|

4 .
The existence of this network allows us to implement the modified version of the

algorithm, as long as we set the correct numbers for some variables on the Algorithm,
which we will do according to Section 3 of [8], with particular help from Lemma 3.4.

The algorithm after both modifications have been applied will remain largely
unchanged, as can be seen in its new implementation, shown in Algorithm 31.

First of all we can see the whenever the algorithm returns some value z (line 10),
this value is tl for some l. This is because z is defined as the x-coordinate of the
intersection of two lines in G. By the definition of ApproximateIntersections,
we know that |kz− l| ≤ δN3 . With that, we know that the conditional on line assures
that |k − l| ≤ |k − kz|+ |kz − l| ≤ δN .

This assures that the number the algorithm returns is tl where l is in the range
[k − δN, k + δN ], just like we wanted. This is, of course, conditional on the correct
functioning of the network. We know the functioning of the network is conditional
on the number of comparators that have been deleted to be less than t, or, in our
case, t0 = δC+1|G|

4 . Notice that the condition on line 4 assures that the number
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Algorithm 31 FindApproximateIntersection(G, k, δ)

Input: a set G of lines, an integer k, and a number δ such that 0 < δ < 1
Output: the value of tl where l is in the range [k − δN, k + δN ]. As a side effect,

the function rearranges G
1: H ← TolerantSortingNetwork(|G|, δ) B |H| ≤ C log( 1

δ )

2: for P ∈ H do
3: i← 1, j ← |P |
4: while j − i ≥ δC+1 |G|

4|H| do
5: Partition(G,P, i, j)

6: m←
⌈
i+j
2

⌉
7: (a, b)← P [m]
8: z ← Intersection(G[a], G[b]).x z = ua,b
9: kz ← ApproximateIntersections(G, z, δ/3)

10: if |kz − k| ≤ 2δN/3 then return z

11: if kz < k − 2δN/3 then
12: for (p, q) ∈ P [i . .m] do B up,q < ua,b ≤ tk
13: if G[p].m > G[q].m then G[p]↔ G[q]

14: i← m+ 1
15: else
16: for (p, q) ∈ P [(m+ 1) . . j] do B up,q > ua,b > tk
17: if G[p].m < G[q].m then G[p]↔ G[q]

18: j ← m− 1

of comparators deleted per step of the network will be no more than δC+1 |G|
4|H| .

Since we have |H| steps, the total number of deleted operators will be at most
|H|δC+1 |G|

4|H| = δC+1|G|
4 = t0, which assures the correct functioning of the network.

Something else that need to proved is that the algorithm always returns an an-
swer. The proof for that will be delegated to Lemma 3.9 of [8].

The last thing that needs to be investigated is the running time of the algorithm.
Firstly, let us see what happens in one iteration of the while in line 4. We have one
call of partition, that takes O(j−i) time, one call of ApproximateIntersections,
that takes O(|G| log 1

δ ) time and some iterations, each one taking at most |G| time.
Therefore, that while takes at most O(|G| log 1

δ ) time.
In each while iteration, the size of j−i it deterministically cut by half. This means

it will run in O(log(δC+1 |G|
4|H|)) time, which, since |H| < |G| and C is a constant, is

O(log 1
δ ).

Lastly, there is the number of iterations of the for at line 2 the depth of the
network: O(log 1

δ ).
Therefore, the overall time complexity of FindApproximateIntersection is

O(|G| log3 1
δ ).

With that, the linear implementation of NewInterval, and, by consequence,
HamSandwichPoint, is finalized.
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Final considerations

Finding linear algorithms is hard. It is famously known that one cannot sort an array
of n elements using comparison based operations in o(n log n) time. The algorithms
that sort arrays also provide us with other useful results, such as the number of
inversions in an array, which is extensively sought throughout the algorithm described
in this work.

Not being able to sort an array in linear time leaves us with a much more limited
set of techniques, such as transforming the time complexity into a geometric progres-
sion or only selecting the k-th element in an array instead of sorting it. We can also
use approximate versions of the more powerful O(n log n) algorithms, which leads to
a more complicated time complexity analysis and very slow running time, regardless
of the asymptotic time complexity, often much worse than the log n factor we were
trying to avoid in the first place.

This leads to algorithms that use amazingly intricate techniques but are likely
very impractical to read, code and execute.

A large difficulty I had with trying to understand the linear solution for the two
dimensional ham sandwich problem was that the depth of the solution was not im-
mediately visible. Once I understood most outline of the algorithm presented by Lo,
Matoušek, and Steiger in [7], which is mostly what is described in Section 3, I had to
dig deeper into how to find an approximate intersection, using the method described
in [8], which in turn relied heavily on the AKS sorting network described in [1], which
in turn uses already complicated algorithms for building expander graphs.

Even the most low-level of those concepts, such as the algorithms for the ex-
pander graphs, are very scarce in their implementations since the constants hidden
in the time complexities make them almost unusable for practical purposes. This is
accentuated by the fact that there are O(n log n) algorithms that work just fine and
will be faster than the O(n) ones for any feasible size input.

I now believe the purpose of this work to be very different from what I originally
intended. I originally wanted to implement the linear time algorithm and exercise
the process of transforming a very mathematical and not code-oriented paper into
something executable. I now know that this task is much harder than I anticipated,
and would require a large amount of work to produce something very impractical.

What this work really taught me, and I hope can teach the ones interested in
reading it, is just how much theory and how many fun topics can fit into a seemingly
simple paper designed to solve a simple problem as fast as it can be done.

44
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